Abstract:
A seal for use with a bearing assembly defining a bearing axis. The seal includes a seal case (14') having a bend lip section (18) configured to be positioned into a groove (22) in a component of the bearing assembly, a first section (30) extending from the bend lip section, a second section (34) offset axially from the first section, and a transition section (90) extending between the first section and the second section to provide the offset between the first and second sections. The transition section defines a neutral axis forming an angle a l with a line L parallel to the bearing axis, and the angle a l is less than or equal to 20°. A seal lip (42) is coupled to the second section and is configured for sealing engagement with a component of the bearing assembly.
Abstract:
A method for manufacturing large diameter tapered roller bearing cages (10B). A straight metal strip, coil or plate of cage blank material (10), precisely dimensioned in width, length and thickness, with or without windows or pockets pre-cut, is fed into a rolling mill (100). The rolling mill incorporates a pair of unparallel forming rolls (102A, 102B) disposed such that the gap (G) there between forms a wedge shape. As the cage blank material (10) is fed through the wedge-shaped forming roll gap (G), one lateral side of the cage blank material is plastically deformed to reduce its thickness (T) and to elongate its length, while no deformation or only a very slight deformation is introduced to the other lateral side of the cage blank, thus forming the cage blank into an arc shape. A third roll (104) disposed in exit side of the forming rolls (102), in a pre-calculated position, bends the rolled cage blank into a circular conical ring (10A). After the entire cage blank is rolled into the conical ring configuration, the conical ring may pass through the rolling mill (100) again for a final resizing. Adjacent butt ends (12A, 12B) of the formed conical ring cage blank (10A) are aligned and joined together during the assembly process to form the large diameter tapered roller bearing cage (10B).
Abstract:
A cage for a rolling element bearing includes a generally ring-shaped wall defining an axis. The wall has a first axial edge and a second axial edge opposite the first axial edge. The cage also includes a circumferential row of spaced-apart openings formed in the wall and configured to receive a plurality of rolling elements. The wall is tapered toward at least one of the first axial edge and the second axial edge by a plurality of individual deformations formed in the wall.
Abstract:
An outer ring (26) for a bearing assembly includes an annular backing member (54) having a body, and an annular race member (50). The body has a first portion defining a radial inner surface (98) and a radial outer surface, and a second portion defining an axially- facing base surface (110) and a radially-facing end surface (118). The annular race member has a radial outer face (58) and a radial inner face, and a first axial end face and a second axial end face (70) that both extend between the radial outer face and the radial inner face. The annular backing member is in press-fit engagement with the annular race member such that the radial outer face of the annular race member engages the radial inner surface of the annular backing member and the second axial end face of the annular race member engages the axially-facing base surface of the annular backing member such that the members are unitized.
Abstract:
A method for manufacturing large diameter tapered roller bearing cages (10B). A straight metal strip, coil or plate of cage blank material (10), precisely dimensioned in width, length and thickness, with or without windows or pockets pre-cut, is fed into a rolling mill (100). The rolling mill incorporates a pair of unparallel forming rolls (102A, 102B) disposed such that the gap (G) there between forms a wedge shape. As the cage blank material (10) is fed through the wedge-shaped forming roll gap (G), one lateral side of the cage blank material is plastically deformed to reduce its thickness (T) and to elongate its length, while no deformation or only a very slight deformation is introduced to the other lateral side of the cage blank, thus forming the cage blank into an arc shape. A third roll (104) disposed in exit side of the forming rolls (102), in a pre-calculated position, bends the rolled cage blank into a circular conical ring (10A). After the entire cage blank is rolled into the conical ring configuration, the conical ring may pass through the rolling mill (100) again for a final resizing. Adjacent butt ends (12A, 12B) of the formed conical ring cage blank (10A) are aligned and joined together during the assembly process to form the large diameter tapered roller bearing cage (10B).