Abstract:
A blood pump system includes a pump housing and an impeller for rotating in a pump chamber within the housing. The impeller has a first side and a second side opposite the first side. The system includes a stator having drive coils for applying a torque to the impeller and at least one bearing mechanism for suspending the impeller within the pump chamber. The system includes a position control mechanism for moving the impeller in an axial direction within the pump chamber to adjust a size of a first gap and a size of a second gap, thereby controlling a washout rate at each of the first gap and the second gap. The first gap is defined by a distance between the first side and the housing and the second gap is defined by a distance between the second side and the pump housing.
Abstract:
A circulatory assist system has a pump with a motor coupled to rotate the pump at a selectable speed. A controller drives the motor at a target speed and collects blood flow measurements during operation of the pump. An impaired flow condition is identified when a plurality of successive blood flow measurements are between an expected minimum flow and a low flow threshold, such that the low flow would necessitate issuing an alert. During the impaired flow condition, it is detected whether an inflow obstruction exists by determining whether a reduction in speed of the pump is correlated with a predetermined increase in the blood flow measurements. If the inflow obstruction is detected, then the speed of the pump is further reduced to further increase the blood flow measurements.
Abstract:
A implantable pump system comprises an implantable pump motor and an external unit. An inverter comprises respective phases couple to the motor via a cable with redundant conductors for each phase. A controller receives power measurements for all the redundant conductors, which are combined and compared in order to detect failures in the non-redundant components within the motor and windings.
Abstract:
A blood pump system is implantable in a patient for ventricular support. A pumping chamber has an inlet for receiving blood from a ventricle of the patient. An impeller is received in the pumping chamber. A motor is coupled to the impeller for driving rotation of the impeller. A motor controller is provided for tracking systolic and diastolic phases of a cardiac cycle of the patient and supplying a variable voltage signal to the motor in a variable speed mode to produce a variable impeller speed linked to the cardiac cycle. The impeller speed comprises a ramping up to an elevated speed during the diastolic phase in order to reduce a load on the ventricle at the beginning of the systolic phase.
Abstract:
A rotary blood pump comprises an impeller in a pump housing with a pumping chamber between first and second walls. The impeller operates in a levitated position spaced from the first and second walls in response to hydrodynamic forces which are boosted by hydrodynamic bearing features in the walls. At least one of the impeller or the walls includes at least one mechanical thrust bearing extending between the impeller and each of the walls, wherein the mechanical thrust bearing is configured such that when the impeller is not being held in the levitated position by the hydrodynamic forces then the mechanical thrust bearing is engaged to maintain a predetermined separation between the hydrodynamic bearing features and the impeller. The mechanical thrust bearing is configured such that when the impeller is being held in the levitated position by the hydrodynamic forces then the mechanical thrust bearing is unengaged.
Abstract:
A blood pump system for left ventricle assist has an implantable pump unit having a multiphase stator having a plurality of windings connected between respective junctions for forming first, second, and third phases. An external control unit comprises an H-bridge inverter having first, second, and third phase legs. A percutaneous cable is provided having first, second, and third parallel pairs of redundant conductors. Each conductor pair is connected between a respective phase leg and a respective junction. The conductors are arranged concentrically around a cable core so that individual conductors of each pair are separated by at least one conductor of a different conductor pair.
Abstract:
A implantable pump system comprises an implantable pump motor and an external unit. An inverter comprises respective phases couple to the motor via a cable with redundant conductors for each phase. A controller receives power measurements for all the redundant conductors, which are combined and compared in order to detect failures in the non-redundant components within the motor and windings.
Abstract:
A centrifugal pump system for a cardiac assist device employs a disc-shaped impeller having an outer circumference adapted to be rotatably driven in a pumping direction. A pump housing has a pumping chamber receiving the impeller, wherein the pumping chamber defines an outlet volute having a separation edge spaced from the outer circumference to provide a limited backflow path coinciding with the pumping direction. A motor drives the impeller in response to a voltage provided to the motor. A current sensor measures current flow within the motor in response to the voltage. A controller estimates a pump flow rate in response to a predetermined relation between the measured current and the pump flow rate, wherein the predetermined relation includes a positive slope from a predetermined backflow rate to a zero pump flow rate.
Abstract:
Upon failure of a primary control unit for controlling an implanted pump in a ventricle assist system enhancing blood flow in a patient, an initial backup control unit is substituted for the failed unit. An interface device is connected to one of the initial backup control unit or the primary control unit. Patient-unique data is downloaded to the interface device to create a transfer data set. The initial backup control unit is connected to the implanted pump as a new primary control unit. The interface device is connected to a replacement backup control unit. The transfer data set is uploaded from the interface device to the replacement backup control unit. The transfer data set on the interface device is modified after uploading to prevent a subsequent uploading from the interface device to another control unit.
Abstract:
A centrifugal pump system having an impeller rotating with first and second magnetic structures on opposite surfaces. A levitation magnetic structure is disposed at a first end of a pump housing having a levitating magnetic field for axially attracting the first magnetic structure. A multiphase magnetic stator at a second end of the pump housing generates a rotating magnetic field for axially and rotationally attracting the second magnetic structure. A commutator circuit provides a plurality of phase voltages to the stator. A sensing circuit determines respective phase currents. A controller calculates successive commanded values for the phase voltages in response to the determined phase currents and a variable commutation angle. The angle is selected to correspond to an axial attractive force of the stator that maintains a levitation of the impeller at a centered position within the pumping chamber.