METHOD FOR PRODUCING POLYANIONIC POSITIVE ELECTRODE ACTIVE MATERIAL COMPOSITE PARTICLES, AND POLYANIONIC POSITIVE ELECTRODE ACTIVE MATERIAL PRECURSOR-GRAPHITE OXIDE COMPOSITE GRANULATED BODIES

    公开(公告)号:CA2911440A1

    公开(公告)日:2014-11-27

    申请号:CA2911440

    申请日:2014-05-19

    Abstract: Conventional polyanionic positive electrode active material-graphene composite particles have not been able to achieve high conductivity since the contact area between the graphene and the polyanionic positive electrode active material is small. The present invention is a method for producing polyanionic positive electrode active material composite particles, which comprises: a step 1 wherein precursor composite granulated bodies, each of which contains a polyanionic positive electrode active material precursor particle in graphite oxide, are formed by mixing a polyanionic positive electrode active material precursor and graphite oxide; and a step 2 wherein the precursor composite granulated bodies obtained in step 1 are heated at 500°C or higher in an inert atmosphere or in a reducing atmosphere. With respect to the X-ray diffraction intensity of the precursor composite granulated bodies, the maximum intensity of the X-ray diffraction peak based on the positive electrode active material is less than 50% of the maximum intensity of the X-ray diffraction peak based on the materials other than the positive electrode active material. With respect to the X-ray diffraction intensity of the polyanionic positive electrode active material composite particles, the maximum intensity of the X-ray diffraction peak based on the positive electrode active material is 50% or more of the maximum intensity of the X-ray diffraction peak based on the materials other than the positive electrode active material.

    POSITIVE ELECTRODE ACTIVE MATERIAL/GRAPHENE COMPOSITE PARTICLES, AND POSITIVE ELECTRODE MATERIAL FOR LITHIUM ION CELL

    公开(公告)号:CA2893574A1

    公开(公告)日:2014-07-31

    申请号:CA2893574

    申请日:2014-01-20

    Abstract: [Problem] To provide: positive electrode active material/graphene composite particles, which are for a positive electrode active material of a lithium ion battery having low electron conductivity, and with which electron conductivity is improved while suppressing hindrance of lithium ion deintercalation into active material particles; and a positive electrode material for a lithium ion battery, said positive electrode material comprising said composite particles. [Solution] The present invention provides: positive electrode active material/graphene composite particles; and a composite particle-like positive electrode material which is used in a lithium ion battery, and which is obtained by combining, with a matrix including graphene, positive electrode active material particles, said positive electrode material wherein, a value obtained by dividing the proportion of carbon (%) in a material surface measured by way of an X-ray photoelectron measurement, by the proportion of carbon (%) in the whole material, is in the range 1.5 to 7 inclusive.

    METHOD FOR PRODUCING POLYANIONIC POSITIVE ELECTRODE ACTIVE MATERIAL COMPOSITE PARTICLES, AND POLYANIONIC POSITIVE ELECTRODE ACTIVE MATERIAL PRECURSOR-GRAPHITE OXIDE COMPOSITE GRANULATED BODIES
    4.
    发明公开
    METHOD FOR PRODUCING POLYANIONIC POSITIVE ELECTRODE ACTIVE MATERIAL COMPOSITE PARTICLES, AND POLYANIONIC POSITIVE ELECTRODE ACTIVE MATERIAL PRECURSOR-GRAPHITE OXIDE COMPOSITE GRANULATED BODIES 审中-公开
    用于生产聚阴离子的正极活性物质和预复合/ GRAPHITOXIDVERBUND-GRANULAT聚阴离子的正极活性物质

    公开(公告)号:EP3001485A4

    公开(公告)日:2017-04-05

    申请号:EP14801413

    申请日:2014-05-19

    Abstract: Conventional polyanionic positive electrode active material-graphene composite particles have not been able to achieve high conductivity since the contact area between the graphene and the polyanionic positive electrode active material is small. The present invention is a method for producing polyanionic positive electrode active material composite particles, which comprises: a step 1 wherein precursor composite granulated bodies, each of which contains a polyanionic positive electrode active material precursor particle in graphite oxide, are formed by mixing a polyanionic positive electrode active material precursor and graphite oxide; and a step 2 wherein the precursor composite granulated bodies obtained in step 1 are heated at 500°C or higher in an inert atmosphere or in a reducing atmosphere. With respect to the X-ray diffraction intensity of the precursor composite granulated bodies, the maximum intensity of the X-ray diffraction peak based on the positive electrode active material is less than 50% of the maximum intensity of the X-ray diffraction peak based on the materials other than the positive electrode active material. With respect to the X-ray diffraction intensity of the polyanionic positive electrode active material composite particles, the maximum intensity of the X-ray diffraction peak based on the positive electrode active material is 50% or more of the maximum intensity of the X-ray diffraction peak based on the materials other than the positive electrode active material.

Patent Agency Ranking