Abstract:
With respect to a plasma processing method of depositing a nitride film on a substrate by using plasma, the plasma processing method includes (a) supplying a plasma processing gas that includes a nitrogen-containing gas to a plasma processing space inside a processing container, and (b) supplying high-frequency power from a high-frequency power supply to an antenna disposed on a quartz portion exposed to the plasma processing space to generate the plasma in the plasma processing space at a time of performing (a). (b) includes supplying a pulse wave of the high-frequency power to the antenna. The pulse wave repeats on and off.
Abstract:
A plasma generating apparatus includes: an electrode pair including a first plasma electrode and a second plasma electrode that are arranged to face each other; an RF power supply that supplies an RF power to the electrode pair; and a matching unit provided between the RF power supply and the electrode pair. The matching unit includes: a first variable capacitor and a second variable capacitor that are connected in parallel with respect to a load between the electrode pair; a coil connected in series with the first plasma electrode; and a capacitor connected in series with the second plasma electrode.
Abstract:
A plasma processing apparatus includes a vacuum container and a plasma source that generates plasma in the vacuum container. The plasma source includes an antenna, an RF power supply connected to one end of the antenna and configured to supply an RF power to the antenna, and a variable capacitor connected to the other end of the antenna and having a variable capacitance.
Abstract:
A film formation apparatus includes a rotary table provided in a processing container; a mounting table mounting a substrate and revolved by rotation of the rotary table; a film formation gas supply part configured to supply a film formation gas to a region through which the mounting table passes by the rotation of the rotary table; a spinning shaft rotatably provided on a portion rotating together with the rotary table; a driven gear provided on the spinning shaft; a driving gear configured to rotate while facing a revolution orbit of the driven gear and provided along an entire circumference of the revolution orbit so as to constitute a magnetic gear mechanism with the driven gear, and a relative-distance-changing mechanism configured to change a relative distance between the revolution orbit of the driven gear and the driving gear.
Abstract:
An operation method of a plasma processing device, includes performing a plasma process on a workpiece by supplying first high frequency power of a predetermined output to an electrode and generating plasma; and performing a charge storage process before the plasma process when a time interval from an end of a previous operation of the plasma processing device exceeds a predetermined interval, the charge storage process including supplying, to the electrode, second high frequency power of a lower output than the predetermined output.
Abstract:
A film deposition apparatus configured to perform a film deposition process on a substrate in a vacuum chamber includes a turntable configured to rotate a substrate loading area to receive the substrate, a film deposition area including at least one process gas supplying part configured to supply a process gas onto the substrate loading area and configured to form a thin film by depositing at least one of an atomic layer and a molecular layer along with a rotation of the turntable, a plasma treatment part provided away from the film deposition area in a rotational direction of the turntable and configured to treat the at least one of the atomic layer and the molecular layer for modification by plasma, and a bias electrode part provided under the turntable without contacting the turntable and configured to generate bias potential to attract ions in the plasma toward the substrate.
Abstract:
An ignition control method includes: providing a substrate processing apparatus including a pair of electrodes in a processing container, a matching box including a variable reactor and an electronic circuit, an RF power supply connected to the electrodes, and a temperature sensor that detects a temperature of the variable reactor; setting the temperature of the variable reactor to a first temperature, and measuring first information indicating a voltage between the electrodes for each adjustment position of the variable reactor when a radio-frequency voltage is applied to the electrodes; determining a preset value of the variable reactor based on the first information; acquiring the detected temperature of the variable reactor as a second temperature; and when the first and second temperatures are different, correcting the current by controlling the electronic circuit such that an adjustment position of the variable reactor becomes the determined preset value.
Abstract:
A plasma processing apparatus includes: a processing container; a substrate holding unit that disposes a plurality of substrates in multiple tiers and is inserted into the processing container; a rotary shaft that rotates the substrate holding unit; a gas supply unit that supplies a processing gas into the processing container; an exhaust unit that exhausts the inside of the processing container; a plurality of electrodes disposed on the outer side of the processing container and arranged in the circumferential direction of the processing container; and a radio-frequency power supply that applies a radio-frequency power to the plurality of electrodes, thereby generating capacitively coupled plasma in the processing container.
Abstract:
A plasma processing method includes providing a plasma processing apparatus including a rotary table that is rotatably provided in a vacuum container and disposes a plurality of substrates on an upper surface along a circumferential direction, a gas supply source that supplies a plasma processing gas to at least one of a plurality of processing areas separated by a separation area in the circumferential direction of the rotary table, and an antenna that is provided to face the upper surface of the rotary table and generates plasma in the at least one processing area. The plasma processing method further includes disposing the plurality of substrates on the rotary table, and supplying the plasma processing gas into the vacuum container and supplying a pulsed wave of RF power to the antenna while rotating the rotary table.
Abstract:
A substrate holding mechanism for holding a substrate placed on a stage which is rotatable with respect to a turntable, includes a substrate holding member, provided at a peripheral portion of the stage, fixed to a rotating shaft disposed below a surface on which the substrate is placed, and contactable to a side surface of the substrate placed on the stage, a biasing member having a first end fixed to the substrate holding member at a position closer to a center of the stage than the rotating shaft, and a second end fixed at a position separated from the substrate holding member toward the center of the stage and below the rotating shaft, and a pressing member configured to press upwardly a portion of the substrate holding member where the first end of the biasing member is fixed.