Abstract:
A component for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a platform that axially extends between a leading edge and a trailing edge, circumferentially extends between a first mate face and a second mate face, and includes a gas path surface and a non-gas path surface. The component defines at least one cavity that extends at least partially inside of the component. A first plurality of cooling holes extends from the at least one cavity to at least one of the first mate face and the second mate face and a second plurality of cooling holes extends from either the at least one cavity or the non-gas path surface to the gas path surface.
Abstract:
An assembly according to an exemplary aspect of the present disclosure includes, among other things, a disk, a cover plate providing a cavity at a first axial side of the disk, a passageway including an inlet provided by a notch in at least one of the disk and the cover plate in fluid communication with the cavity, and the passageway extending from the inlet to an exit provided at a second axial side of the disk opposite the first axial side, the exit in fluid communication with the inlet, and the passageway configured to provide fluid flow from the cavity to the exit.
Abstract:
A rotor blade according to an exemplary aspect of the present disclosure includes, among other things, a platform, an airfoil that extends from the platform, a first cooling core that extends at least partially inside the airfoil, a second cooling core inside of the platform and a first cooling hole that extends between a mate face of the platform and the second cooling core.
Abstract:
An airfoil has a body that includes leading and trailing edges that adjoin pressure and suction sides to provide an exterior airfoil surface. A cooling passage extends in a radial direction from a root to a tip. A trailing edge cooling passage interconnects the cooling passage to the trailing edge. The trailing edge cooling passage includes first and second pedestals of different sizes that are arranged in a repeating pattern with respect to pedestals of the same size and with respect to pedestals of different sizes.
Abstract:
A gas turbine engine component comprises a blade having a leading edge and a trailing edge. The blade is mounted to a disc and configured for rotation about an axis. A platform supports the blade, and has a fore edge portion at the leading edge and an aft edge portion at the trailing edge. At least one of the fore edge portion and aft edge portion includes a mouth portion defined by an inner wing and an outer wing spaced radially outward of the inner wing. At least one coverplate is retained against the disc by the inner wing. A gas turbine engine is also disclosed.
Abstract:
A turbine blade for a gas turbine engine includes an airfoil that extends in a first radial direction from a platform. A root extends from the platform in a second radial direction and has opposing lateral sides that provide a firtree-shaped contour. The contour includes first, second and third lobes on each of the lateral sides and that tapers relative to the radial direction away from the platform. The first, second and third lobes each provide contact surfaces arranged at about 45° relative to the radial direction. A contact plane on each lateral side at an angle of about 11° relative to the radial direction defining a contact point on each of the contact surfaces. The first, second and third lobes each include first, second and third grooves that are substantially aligned with one another along an offset plane spaced a uniform offset distance from the contact plane.
Abstract:
A method of fabricating an airfoil includes the steps of fabricating a first core including a first plurality of ribs defining a first plurality of passages of a completed airfoil, and fabricating as second core including a second plurality of ribs defining a second plurality of passages of the completed airfoil. The second plurality of ribs includes a plurality of standoffs. The plurality of standoffs set a spacing between the first plurality of ribs and the second plurality of ribs to define a spacing between the first plurality of channels and the second plurality of channels of the completed airfoil. The airfoil is then molded about the core assembly. Once completed, the core assembly is removed to provide a completed airfoil incorporating multiple microcircuits with a desired stability and structural integrity.
Abstract:
A rotor blade according to an exemplary aspect of the present disclosure includes, among other things, a platform, an airfoil that extends from the platform and a platform cooling passage extending inside of the platform. The platform cooling passage includes an inlet disposed through a non-gas path surface of the platform and an outlet disposed through a mate face of the platform.