Abstract:
PROBLEM TO BE SOLVED: To hold a vane (40) in an engine casing structure (49) so that it appropriately functions during the operation of a gas turbine engine.SOLUTION: The gas turbine engine includes the engine casing structure (49) and a holding block assembly (58). The engine casing structure (49) includes a pocket (60) housing the holding block assembly (58). The holding block assembly (58) includes a stopper block (62), and a pin (64) holding the stopper block (62) in the pocket (60). The stopper block (62) is loosely mounted with respect to the pin (64).
Abstract:
A method of forming an airfoil with an integrated platform includes: a) providing an airfoil core; b) wrapping a first overwrap ply around the airfoil core; c) darting a first end of the first overwrap ply to allow the overwrap ply to extend perpendicular to the airfoil core to form a first platform; d) filling the darted parts filler plies; e) wrapping a second overwrap ply around the first overwrap ply; f) darting a first end of the second overwrap ply to allow the second overwrap ply to extend adjacent to the first overwrap ply to form the first platform; g) filling the darted parts of the second overwrap ply with one or more filler plies; and h) placing a cap ply in the shape of the platform adjacent to at least one of the first and second overwrap plies. An airfoil with an integrated platform is also disclosed.
Abstract:
A gas turbine engine includes an engine casing structure and a retention block assembly. The engine casing structure includes a pocket which receives the retention block assembly. The retention block assembly includes a stop block and a pin that retains the stop block within the pocket. The stop block is loose relative to the pin.
Abstract:
A turbine seal system comprises an annular structural frame, a circumferential ring, a fairing and a seal. The circumferential ring is joined to the annular structural frame. The fairing is disposed within the annular structural frame and is engaged with the circumferential ring to limit circumferential rotation of the fairing with respect to the annular structural frame. The seal extends between the fairing and the circumferential ring. In one embodiment, the structural component comprises a ring-strut-ring turbine exhaust case.
Abstract:
An assembly for a gas turbine engine includes a frame, a mount, and a fairing. The mount is attached to the frame and the fairing is connected to the mount. The fairing and mount have mating anti-deflection features that engage to prevent circumferential movement of the fairing relative to the frame.
Abstract:
An assembly includes a gas turbine engine component and a plate. The plate is spaced from a surface of the component and generally conforms to the shape of the surface. The plate and component form a passageway that allows for passage of a secondary gas flow between the component and the plate.
Abstract:
A gas turbine engine includes a casing, a probe, and a fairing. The probe extends through the casing and the fairing is disposed within the casing. The fairing is engaged by the probe to prevent circumferential movement of the fairing relative to the casing.
Abstract:
A borescope plug assembly includes a borescope plug having a shaft section and a tip section, a bushing engageable with the shaft section and a seal engageable with the tip section.
Abstract:
A corrugated shield comprises a mounting base and a corrugated ring section. The mounting base is disposed at an aft end of the ring section for securing the shield ring section within a generally annular cavity. The generally annular cavity is defined at least in part by a hot fluid flow path boundary wall, and a radially adjacent and spaced apart cold fluid flow path boundary wall. The corrugated ring section is configured to substantially block a line of sight between the hot fluid flow path boundary wall and the cold fluid flow path boundary wall.
Abstract:
A gas turbine engine includes an engine casing structure and a retention block assembly. The engine casing structure includes a pocket which receives the retention block assembly. The retention block assembly includes a stop block and a pin that retains the stop block within the pocket. The stop block is loose relative to the pin.