Abstract:
A lubrication system is disclosed. The lubrication system may be used in conjunction with a gas turbine engine for generating power or lift. The lubrication system utilized a flow scheduling valve which reduces lubricant flow to at least one component based on an engine load. The lubrication system may further include a main pump which may be regulated by an engine speed. Thus, a lubrication system which provides a lubricant to engine components based on the load and speed of the engine is possible. The system may improve efficiency of the engine by reducing the power previously spent in churning excess lubricant by at least one engine component as well as reducing the energy used by a lubricant cooler in cooling the excess lubricant. The lubricant cooler size may also be minimized to reduce weight and air drag due to the reduced lubricant flow.
Abstract:
A disclosed lubrication pump includes a main pump stage, an auxiliary pump stage, and scavenger pump stages. The lubrication pump therefore may be driven by a common shaft of the accessory gearbox.
Abstract:
A system for a turbine engine includes a turbine engine component, a lubricant collection device and a plurality of lubricant circuits. The lubricant collection device is fluidly coupled with the turbine engine component. The lubricant circuits are fluidly coupled between the lubricant collection device and the turbine engine component. The lubricant circuits include a first circuit and a second circuit configured in parallel with the first circuit. Each of the lubricant circuits includes a lubricant pump. The first and the second circuits receive lubricant from the lubricant collection device, and direct the received lubricant to the turbine engine component.
Abstract:
A system for a turbine engine includes a turbine engine component, a lubricant collection device and a plurality of lubricant circuits. The lubricant collection device is fluidly coupled with the turbine engine component. The lubricant circuits are fluidly coupled between the lubricant collection device and the turbine engine component. The lubricant circuits include a first circuit and a second circuit configured in parallel with the first circuit. Each of the lubricant circuits includes a lubricant pump. The first and the second circuits receive lubricant from the lubricant collection device, and direct the received lubricant to the turbine engine component.
Abstract:
An exemplary system for delivering a turbomachine fluid to a supplied area is a pump configured to draw fluid from both a first container and a second container when operating in both a positive g-force environment and a negative g-force environment. The fluid from the first container in a positive g-force environment is a mixture of air and oil, and the fluid from the first container in a negative g-force environment is primarily oil.
Abstract:
A lubrication system is provided. The lubrication system may be used in conjunction with a gas turbine engine for generating power or lift. The lubrication system utilized a flow scheduling valve which reduces lubricant flow to at least one component based on an engine load. The lubrication system may further include a main pump which may be regulated by an engine speed. Thus, a lubrication system which provides a lubricant to engine components based on the load and speed of the engine is possible. The system may improve efficiency of the engine by reducing the power previously spent in churning excess lubricant by at least one engine component as well as reducing the energy used by a lubricant cooler in cooling the excess lubricant. The lubricant cooler size may also be minimized to reduce weight and air drag due to the reduced lubricant flow.
Abstract:
An assembly is provided that includes a shaft, a bearing, a stator seal element, a rotor seal element and a shield. The shaft extends along an axis. The bearing supports the shaft and receives lubrication fluid. The stator seal element circumscribes the shaft. The rotor seal element is mounted on the shaft axially between the bearing and the stator seal element. The rotor seal element forms a seal with the stator seal element. The shield substantially prevents the lubrication fluid from traveling axially away from the bearing onto the rotor seal element.
Abstract:
A lubrication system for use in a gas turbine engine is comprised of a first pump driven by a first shaft at a first speed and a second pump driven by a second shaft at a second speed that is faster than the first speed. The first and second pumps provide lubricant to an engine operating system. The pumps are optimized based on differential speed changes between the two drive speeds for the respective shafts to provide an optimized oil flow for the engine as a whole. A gas turbine engine and a method of operating a gas turbine engine are also disclosed.
Abstract:
A disclosed lubrication pump includes a main pump stage, an auxiliary pump stage, and scavenger pump stages. The lubrication pump therefore may be driven by a common shaft of the accessory gearbox.