Abstract:
PROBLEM TO BE SOLVED: To improve a clearance control in a turbomachine. SOLUTION: A system and method for controlling a clearance of the turbomachine 10 includes adjusting machine case cooling air 33 in accordance with a difference between a desired clearance and a actual clearance. An accurate estimate of the actual clearance is performed by a real time mathematical model of an on-board engine controller 40. The model computes each thermal growth of the turbomachine components 41, 43 and 50 with a difference equation derived from a closed form solution of a 1st order differential equation obtained through the application of a 1st law of thermodynamics. The resulting equation is conveniently formulated in terms of equivalent time constant and steady state growth both of which are correlated with thermo-physical characteristics of multiple fluid streams 48 exchanging heat with the components 41, 43 and 50. COPYRIGHT: (C)2003,JPO
Abstract:
A gas turbine engine inlet sensor fault detection and accommodation system comprises an engine model, an engine parameter comparison block, an inlet condition estimator, control laws, and a fault detection and accommodation system. The engine model produces a real-time model-based estimate of engine parameters. The engine parameter comparison block produces residuals indicating the difference between the real-time model-based estimate of engine parameters and sensed values of the engine parameters. The inlet condition estimator iteratively adjusts an estimate of inlet conditions based on the residuals. The control laws produce engine control parameters for control of gas turbine engine actuators based on the inlet conditions. The fault detection and accommodation system detects faults in inlet condition sensors, selects sensed inlet conditions for use by the control laws in the event of no fault, and selects estimated inlet conditions for use by the control laws in the event of inlet condition sensor fault.
Abstract:
Systems and methods for controlling a fluid based engineering system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states of the model processor, the dynamic states input to an open loop model based on the model operating mode, wherein the open loop model generates a current state model as a function of the dynamic states and the model input, wherein a constraint on the current state model is based a series of cycle synthesis modules, each member of the series of cycle synthesis modules modeling a component of a cycle of the control system and including a series of utilities, the utilities are based on mathematical abstractions of physical properties associated with the component. The model processor may further include an estimate state module for determining an estimated state of the model based on a prior state model output and the current state model of the open loop model.
Abstract:
A gas turbine engine comprises a compressor, a combustor, a turbine, and an electronic engine control system. The compressor, combustor, and turbine are arranged in flow series. The electronic engine control system is configured to estimate combustor fuel-air ratio based on a realtime model-based estimate of combustor airflow, and commands engine actuators to correct for a difference between the estimated combustor fuel-air ratio and a limit fuel-air ratio selected to avoid lean blowout.
Abstract:
A gas turbine engine comprises a compressor, a combustor, a turbine, and an electronic engine control system. The compressor, combustor, and turbine are arranged in flow series. The electronic engine control system is configured to generate a real-time estimate of compressor stall margin from an engine model, and command engine actuators to correct for the difference between the real time estimate of compressor stall margin and a required stall margin.
Abstract:
A gas turbine engine comprises a compressor, a combustor, a turbine, and an electronic engine control system. The compressor, combustor, and turbine are arranged in flow series. The electronic engine control system is configured to estimate combustor fuel-air ratio based on a realtime model-based estimate of combustor airflow, and commands engine actuators to correct for a difference between the estimated combustor fuel-air ratio and a limit fuel-air ratio selected to avoid lean blowout.
Abstract:
A gas turbine engine inlet sensor fault detection and accommodation system comprises an engine model, an engine parameter comparison block, an inlet condition estimator, control laws, and a fault detection and accommodation system. The engine model produces a real-time model-based estimate of engine parameters. The engine parameter comparison block produces residuals indicating the difference between the real-time model-based estimate of engine parameters and sensed values of the engine parameters. The inlet condition estimator iteratively adjusts an estimate of inlet conditions based on the residuals. The control laws produce engine control parameters for control of gas turbine engine actuators based on the inlet conditions. The fault detection and accommodation system detects faults in inlet condition sensors, selects sensed inlet conditions for use by the control laws in the event of no fault, and selects estimated inlet conditions for use by the control laws in the event of inlet condition sensor fault.
Abstract:
A gas turbine engine comprises a compressor, a combustor, a turbine, and an electronic engine control system. The compressor, combustor, and turbine are arranged in flow series. The electronic engine control system is configured to estimate combustor fuel-air ratio based on a realtime model-based estimate of combustor airflow, and commands engine actuators to correct for a difference between the estimated combustor fuel-air ratio and a limit fuel-air ratio selected to avoid lean blowout.
Abstract:
A gas turbine engine inlet sensor fault detection and accommodation system comprises an engine model, an engine parameter comparison block, an inlet condition estimator, control laws, and a fault detection and accommodation system. The engine model produces a real-time model-based estimate of engine parameters. The engine parameter comparison block produces residuals indicating the difference between the real-time model-based estimate of engine parameters and sensed values of the engine parameters. The inlet condition estimator iteratively adjusts an estimate of inlet conditions based on the residuals. The control laws produce engine control parameters for control of gas turbine engine actuators based on the inlet conditions. The fault detection and accommodation system detects faults in inlet condition sensors, selects sensed inlet conditions for use by the control laws in the event of no fault, and selects estimated inlet conditions for use by the control laws in the event of inlet condition sensor fault.
Abstract:
A system and method of controlling clearance in a turbomachine (10) includes adjusting the machine case cooling (33) air in response to the difference between the desired clearance and the actual clearance. An accurate estimate of the actual clearance is made with a real time mathematical model on-board engine controller (40). The model computes thermal growth of the turbomachine components (41, 43, 50) each with a difference equation derived from a closed form solution to the 1 order differential equation obtained through the application of 1 law of thermodynamics. The resulting equation is conveniently formulated in terms of equivalent time constant and steady state growth both correlated with thermo-physical characteristics of multiple fluid streams (48) exchanging heat with the component (41, 43, 50). The solution is applied over a time step of the control software. Approximating coefficients are strategicay placed in the model to allow calibration of the model to a particular version of the engine hardware.