Abstract:
A gas turbine engine comprises a compressor, a combustor, a turbine, and an electronic engine control system. The compressor, combustor, and turbine are arranged in flow series. The electronic engine control system is configured to estimate combustor fuel-air ratio based on a realtime model-based estimate of combustor airflow, and commands engine actuators to correct for a difference between the estimated combustor fuel-air ratio and a limit fuel-air ratio selected to avoid lean blowout.
Abstract:
A gas turbine engine comprises a compressor, a combustor, a turbine, and an electronic engine control system. The compressor, combustor, and turbine are arranged in flow series. The electronic engine control system is configured to generate a real-time estimate of compressor stall margin from an engine model, and command engine actuators to correct for the difference between the real time estimate of compressor stall margin and a required stall margin.
Abstract:
A gas turbine engine comprises a compressor, a combustor, a turbine, and an electronic engine control system. The compressor, combustor, and turbine are arranged in flow series. The electronic engine control system is configured to estimate combustor fuel-air ratio based on a realtime model-based estimate of combustor airflow, and commands engine actuators to correct for a difference between the estimated combustor fuel-air ratio and a limit fuel-air ratio selected to avoid lean blowout.
Abstract:
A gas turbine engine comprises a compressor, a combustor, a turbine, and an electronic engine control system. The compressor, combustor, and turbine are arranged in flow series. The electronic engine control system is configured to estimate combustor fuel-air ratio based on a realtime model-based estimate of combustor airflow, and commands engine actuators to correct for a difference between the estimated combustor fuel-air ratio and a limit fuel-air ratio selected to avoid lean blowout.