Abstract:
PROBLEM TO BE SOLVED: To provide a ceramic matrix composite incorporating boron nitride coated reinforcing fiber therein. SOLUTION: The boron nitride coated fiber and the composite article comprising the fiber are described. The fiber can be desized and coated in one continuous process without requiring purging in between processing steps. The fiber may be heated up in an ammonia atmosphere and may then be brought into contact with a reaction mixture comprising a boron feed source and a nitrogen feed source. Once coated, the fiber may be used in the ceramic matrix composite. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
Boron nitride coated fibers, and composite articles comprising such fibers, are described herein. These fibers can be desized and coated in one continuous process, without requiring purging in between processing steps. The fibers may be heated up in an ammonia atmosphere, and then be contacted with a reaction mixture, which comprises a boron source and a nitrogen source. Once coated, the fibers may be utilized in a ceramic matrix composite.
Abstract:
Boron nitride coated fibers, and composite articles comprising such fibers, are described herein. These fibers can be desized and coated in one continuous process, without requiring purging in between processing steps. The fibers may be heated up in an ammonia atmosphere, and then be contacted with a reaction mixture, which comprises a boron source and a nitrogen source. Once coated, the fibers may be utilized in a ceramic matrix composite.
Abstract:
A method for desulfurizing a metal alloy comprises heating the metal alloy to a molten state. A gaseous desulfurizing compound is bubbled through the molten alloy to form a solid sulfur-containing waste phase and a molten reduced-sulfur alloy phase. The solid waste phase and the molten reduced-sulfur alloy phase are separated. The gaseous desulfurizing compound includes a constituent element selected from the group: alkali metals, alkaline earth metals, and rare earth metals.
Abstract:
Disclosed is a method of fabricating a preceramic polymer for making a ceramic material including a metal boride. The method includes providing a starting preceramic polymer that includes a silicon-containing backbone chain and first and second reactive side groups extending off of the silicon-containing backbone chain, reacting a boron-containing material with the first reactive side group to bond a boron moiety to the silicon-containing backbone chain, and reacting a metal-containing material with the second reactive side group to bond a metal moiety to the silicon-containing backbone chain such that the preceramic polymer includes the boron moiety and the metal moiety extending as side groups off of the silicon-containing backbone chain. Also disclosed is a preceramic polymer composition and a metal-boride-containing ceramic article fabricated from the preceramic polymer.
Abstract:
A method of fabricating a carbon fiber-reinforced article includes providing carbon fibers that have surfaces that include an initial interfacial bonding strength capacity with respect to bonding with boron nitride. The surfaces are then modified to reduce the initial interfacial bonding strength capacity. A layer of boron nitride is then deposited on the modified surfaces and the carbon fibers are then embedded in a ceramic matrix. A carbon fiber-reinforced article includes the carbon fibers, the layer of boron nitride on the surfaces of the carbon fibers, and the ceramic matrix. The article exhibits non-brittle fracture.