Abstract:
INVERSE THERMAL ACOUSTIC IMAGING PART INSPECTION A method of identifying a flaw in a part is provided that includes vibrating a part to induce heat. The heat originates in any flaws in the part. A thermal image is obtained using, for example, an infrared camera. A mathematical representation of the thermophysics, such as the heat conduction or thermal energy equations using the boundary element method or finite element method is used to identify a source and an intensity of the heat identified with the thermal image. Using the source and intensity of the heat, flaw characteristics for the part can be determined. The method is employed using an inspection system that includes a vibration device for vibrating the part. An imaging device, such as an infrared camera, measures temperature on the surface of the part. An assumption is made or additional measurements are taken to obtain values for surface flux or surface heat transfer coefficients. A processor communicates with the imaging device for receiving the surface temperature. The processor includes computer memory having part characteristics and mathematical equations. The processor uses the measured surface temperature, assumed or measured heat flux or heat transfer coefficients, part characteristics and mathematical equations to determine the flaw characteristics in the part.
Abstract:
An inspection apparatus includes a light source positioned to direct light to a first surface of a workpiece. An infrared detector is positioned to receive radiation from the first surface. A data acquisition and processing computer is coupled to the light source and the infrared detector. The computer triggers the light source to emit the light a number of instances. The computer acquires thermal data from the infrared detector for a number of times after each of the instances. The computer is configured to process the data using a theoretical solution to analyze the thermal data based upon an average of the thermal data for a number of each of corresponding ones of the times from different ones of the instances.
Abstract:
An inspection apparatus includes a light source positioned to direct light to a first surface of a workpiece. An infrared detector is positioned to receive radiation from the first surface. A data acquisition and processing computer is coupled to the light source and the infrared detector. The computer triggers the light source to emit the light a number of instances. The computer acquires thermal data from the infrared detector for a number of times after each of the instances. The computer is configured to process the data using a theoretical solution to analyze the thermal data based upon an average of the thermal data for a number of each of corresponding ones of the times from different ones of the instances.
Abstract:
A method of determining the thickness of an internal wall in a gas turbine engine component includes the steps of utilizing flash thermography to measure a complete thickness of a component between an outer wall and at least one enlarged cooling channel at a location where an outer cooling channel is positioned between the outer wall and the at least one enlarged cooling channel and where at least one member spans the cooling channel, such that the thickness is through the member which spans the outer cooling channel. An outer thickness of the component is measured from the outer wall to an outer wall of the outer cooling channel. A thickness is determined from an inner wall of the outer cooling channel to the at least one enlarged cooling channel by subtracting the measured outer thickness from the complete thickness, and also subtracting a known thickness of the outer cooling channel.
Abstract:
Systems and methods are disclosed herein for repairing components. A material layer may be deposited on a surface of a component. The material layer may cover a cooling hole. A pulsed heat source may heat the component and the material layer. An infrared camera may take a series of images of the component. A location of the cooling hole may be identified based on thermal properties of the component. A removal tool may remove a portion of the material layer in order to expose the cooling hole.