Abstract:
PROBLEM TO BE SOLVED: To keep a danger of damage of a following blade to a minimum in the case where a break off hollow fan blade comes into collision with the following blade. SOLUTION: A hollow air foil for gas-turbine engine having a leading edge 50, a trailing edge 52, a positive pressure face 54 and a negative pressure face 56 comprises a solid region 78 in which a thickness of a blade chord is increased, and a plurality of buttresses 82, 84, 86, 88. The hollow air foil for gas-turbine engine is selectively strengthened. Accordingly, a danger of breakage of the air foil is reduced in a case where the air foil comes into collision with a following air foil when the air foil is in a braking state.
Abstract:
An air-oil cooler (AOC) for a gas turbine engine is disclosed. The AOC may comprise an oil inlet, an oil outlet, and heat exchange elements between the oil inlet and the oil outlet. The AOC may be longitudinally positioned between a fan and a V-groove of the engine and radially spaced between a low pressure compressor and a low pressure compressor panel. A gas turbine engine comprising an AOC is disclosed. The AOC of the engine may comprise an oil inlet, an oil outlet, and heat exchange elements between the oil inlet and the oil outlet. The AOC of the engine may be longitudinally positioned between a fan and a V-groove of the engine and radially spaced between a low pressure compressor and a low pressure compressor panel. A method of operating an AOC for use on a gas turbine engine is also disclosed.
Abstract:
A system is provided for a turbine engine. The system includes a rotor assembly and a monitoring system. The rotor assembly includes a plurality of rotor blades connected to a shaft. The monitoring system includes a processing system. This processing system is adapted to receive blade data indicative of a rotational position of at least a first of the rotor blades. The processing system is also adapted to process shaft data with the blade data to provide torque data indicative of a torque to which at least a portion of the rotor assembly is being subjected, where the shaft data is indicative of a rotational position of the shaft.
Abstract:
A fan rotor includes a rotor body with at least one slot receiving a fan blade. The fan blade has an outer surface, at least at some areas, formed of a first material and an airfoil extending from a dovetail. The dovetail is received in the slot. A spacer is positioned radially inwardly of the dovetail biasing the fan blade against the slot. The spacer includes a grounding element, which is in contact with a portion of the dovetail formed of a second material that is more electrically conductive than the first material. The grounding element is in contact with a rotating element that rotates with the rotor. The rotating element is formed of a third material. The first material is less electrically conductive than the third material. The grounding and rotating elements form a ground path from the portion of the dovetail into the rotor.
Abstract:
A process for manufacturing a turbine engine component includes the steps of: providing a powder containing gamma titanium aluminide; and forming a turbine engine component from said powder using a direct metal laser sintering technique.
Abstract:
An air-oil cooler (AOC) for a gas turbine engine is disclosed. The AOC may comprise an oil inlet, an oil outlet, and heat exchange elements between the oil inlet and the oil outlet. The AOC may be longitudinally positioned between a fan and a V-groove of the engine and radially spaced between a low pressure compressor and a low pressure compressor panel. A gas turbine engine comprising an AOC is disclosed. The AOC of the engine may comprise an oil inlet, an oil outlet, and heat exchange elements between the oil inlet and the oil outlet. The AOC of the engine may be longitudinally positioned between a fan and a V-groove of the engine and radially spaced between a low pressure compressor and a low pressure compressor panel. A method of operating an AOC for use on a gas turbine engine is also disclosed.
Abstract:
A turbine engine has a circumferentially segmented shroud within a case structure. Each shroud segment is mounted for movement between an inboard position and an outboard position. One or more springs bias the shroud segments toward their inboard positions. One or more valves are positioned to vent one or more volumes so as to counter the spring bias to shift the shroud segments to their outboard positions.
Abstract:
Un moteur à turbine (20) comprend un flasque (62, 64) segmenté dans le sens circonférentiel dans une structure de carter. Chaque segment de flasque (66, 68) est monté pour un mouvement entre une position intérieure et une position extérieure. Un ou plusieurs ressorts (130, 132, 134) sollicitent les segments de flasque (66, 68) vers leurs positions intérieures. Une ou plusieurs soupapes (144, 146) sont positionnées pour dégazer un ou plusieurs volumes de manière à contrer la sollicitation du ressort pour décaler les segments de flasque (66, 68) vers leurs positions extérieures.