Abstract:
A fan platform section (300) may include a flow path portion (310) with a plurality of composite plies. A first composite ply (830) in the plurality of composite plies may include directional fibers (835). The directional fibers may be configured to prevent twisting of the flow path section in response to a centripetal load. The fan platform section may include a second composite ply (820) in the plurality of composite plies. The second composite ply may include directional fibers (825). The directional fibers in the first composite ply may be orthogonal with respect to the directional fibers in the second composite ply.
Abstract:
A mount for mounting a component to a gas turbine engine is disclosed. The mount may include a central portion that attaches to the component, and a flange circumscribing the central portion and extending to the gas turbine engine, the flange including a fusible region that breaks at a predetermined load. A method for protecting a component mounted to a gas turbine engine is also disclosed. The method may include attaching a mount to a casing of the gas turbine engine, the mount including a fusible region that breaks at a predetermined load. The method may further include attaching the component to the mount. The method may further include the fusible region breaking when the mount experiences the predetermined load, detaching the component from the casing of the gas turbine engine.
Abstract:
A recirculation seal for use within a gas turbine engine. The recirculation seal includes a first seal base, including a first seal base axis. The recirculation seal further includes a second seal base, including a second seal base axis The recirculation seal further includes a resilient bulb member coupled to the first seal base. The resilient bulb member includes an exterior bulb wall and an interior bulb wall, wherein the interior bulb wall defines an interior space.
Abstract:
A composite fan case has a generally cylindrical composite shell, at least one band of sacrificial composite material circumscribing an outer surface of the composite shell, and a metallic rail mounted on the band of sacrificial material. Also disclosed is a method of construction the aforementioned case.
Abstract:
A fan section of a gas turbine engine includes a fan containment case assembly includes an outer case of an aluminum alloy. The outer case extends circumferentially around an axial centerline. A thermally conforming liner assembly is located inwardly of the outer case. The thermally conforming liner assembly includes a circumferential liner of an aluminum alloy. A ballistic liner is located between the outer case and the thermally conforming liner assembly.
Abstract:
A mount for mounting a component to a gas turbine engine is disclosed. The mount may include a central portion that attaches to the component, and a flange circumscribing the central portion and extending to the gas turbine engine, the flange including a fusible region that breaks at a predetermined load. A method for protecting a component mounted to a gas turbine engine is also disclosed. The method may include attaching a mount to a casing of the gas turbine engine, the mount including a fusible region that breaks at a predetermined load. The method may further include attaching the component to the mount. The method may further include the fusible region breaking when the mount experiences the predetermined load, detaching the component from the casing of the gas turbine engine.
Abstract:
An ice panel for a fan case of a gas turbine engine is disclosed. The ice panel may comprise a facesheet located on an inner surface of the fan case and it may comprise a chopped prepreg tape that is cured. The chopped prepreg tape may comprise randomly oriented chips of fibers impregnated with a resin matrix.
Abstract:
A blade containment system includes a plurality of circumferentially-arranged rotatable blades. Each blade has a blade compliance. An annular containment structure is arranged around the rotatable blades. The containment structure includes a liner that has a liner compliance. The blade compliance and the liner compliance are configured such that a strain induced on a respective one of the blades upon impact with the liner is less than a threshold critical strain beyond which the rotatable blades fracture.