Abstract:
A module for a gas turbine engine comprises a frame and a frame cooling system. The frame includes a circumferentially distributed plurality of radially extending struts. Each strut is joined to an outer frame section at an outer frame junction, and joined to an inner frame section at an inner frame junction. The frame cooling system comprises an inlet, a plurality of cooling air passages extending from the inlet radially through each of the plurality of frame struts; and an outlet. The outlet is in fluid communication with at least one of the cooling air passages and includes a film cooling hole formed through the frame proximate the outer frame junction.
Abstract:
Eine Strukturgehäuseanordnung umfasst einen Rahmen, eine Verkleidung und einen Wärmeschild. Der Rahmen ist aus einem Material mit einem Temperaturgrenzwert unter einem Betriebspunkt eines Gasturbinenmotors hergestellt und umfasst einen äußeren Ring, einen inneren Ring und eine Mehrzahl von Streben, die sich dazwischen erstrecken, um einen Strömungsweg zu definieren. Die Verkleidung ist aus einem Material mit einem Temperaturgrenzwert oberhalb des Betriebspunkts des Gasturbinenmotors hergestellt und umfasst eine Ring-Strebe-Ring-Struktur, die den Strömungsweg auskleidet. Der Wärmeschild ist zwischen dem Rahmen und der Verkleidung angeordnet, um die Übertragung von abgestrahlter Wärme dazwischen zu hemmen. Der Wärmeschild kann die gesamte Sichtlinie zwischen der Verkleidung und dem Rahmen blockieren. Der Rahmen kann aus einer CA-6NM-Legierung hergestellt sein. Ein Verfahren zum Auslegen einer Turbinengehäusestruktur schließt das Auswählen eines Rahmenmaterials mit einem Temperaturgrenzwert unter dem Betriebspunkt eines Motors ein.
Abstract:
A structural case assembly comprises a frame, fairing and heat shield. The frame is fabricated from a material having a temperature limit below an operating point of a gas turbine engine, and comprises an outer ring, an inner ring and a plurality of struts extending therebetween to define a flow path. The fairing is fabricated from a material having a temperature limit above the operating point of the gas turbine engine, and comprises a ring-strut-ring structure that lines the flow path. The heat shield is disposed between the frame and the fairing to inhibit radiant heat transfer therebetween. The heat shield may block all line-of-sight between the fairing and the frame. The frame may be produced from CA-6NM alloy. A method for designing a turbine case structure includes selecting a frame material having a temperature limit below the operating point of an engine.
Abstract:
A method of mixing airflow within an inner diameter (ID) mixing chamber of a turbine exhaust case (TEC) includes directing pressurized airflow into the ID mixing chamber. Cooling airflow is directed radially inward via a tube and is then expelled into the ID mixing chamber in a circumferential direction for mixing with the pressurized airflow.
Abstract:
A turbine exhaust case employed in an industrial gas turbine engine includes a frame, a fairing and a heat shield. The frame includes an outer ring, an inner ring, and struts connected between the outer ring and the inner ring. The fairing includes a fairing outer ring, a fairing inner ring, and fairing struts connected between the fairing outer ring and the fairing inner ring. The heat shield is located between the frame outer ring and the fairing outer ring and provides a thermal barrier between the fairing outer ring and the frame outer ring, wherein the heat shield includes an aft portion having a flange that interfaces with the frame outer ring to form an air dam that directs cooling airflow forward along the frame outer ring within an outer diameter cavity formed between the frame outer ring and the heat shield.
Abstract:
Cooling a turbine exhaust case (TEC) employed in an industrial gas turbine engine includes supplying cooling airflow from an outer diameter (OD) to an inner diameter (ID) cavity, supplying a secondary airflow having a pressure greater than the pressure of the cooling airflow to the ID cavity for mixing with the cooling airflow to provide a mixed airflow, and directing the mixed airflow in a serpentine cooling path that includes first directing the mixed airflow radially outward via hollow struts to an OD cavity, then radially inward via hollow fairings that surround the hollow struts.