Abstract:
This disclosure relates to a gas turbine engine including a component having a leading edge, a pressure side and a suction side opposite the pressure side. The component includes a first group of showerhead holes in the leading edge and a second group of showerhead holes in one of the pressure side and the suction side. The component further includes a first core passageway and a second core passageway separate from the first core passageway. The first core passageway and the second core passageway are in communication with a respective one of the first group of showerhead holes and the second group of showerhead holes.
Abstract:
An airfoil has a body that includes leading and trailing edges joined by spaced apart pressure and suction sides to provide an exterior airfoil surface. A leading edge wall provides the exterior airfoil surface at the leading edge. An impingement wall is integrally formed with the leading edge wall to provide an impingement cavity between the leading edge wall and the impingement wall and multiple impingement holes are provided in the impingement wall. The impingement holes are spaced laterally across the impingement wall. A method of manufacturing an airfoil includes the steps of depositing multiple layers of powdered metal onto one another, joining the layers to one another with reference to CAD data relating to a particular cross-section of an airfoil, and producing the airfoil.
Abstract:
An airfoil includes a leading edge, a trailing edge region, a suction surface, a pressure surface, a cooling passageway, and a column of flow separators. The trailing edge region is located axially downstream from the leading edge and terminates in a trailing edge. The suction surface and the pressure surface both extend axially between the leading edge and the trailing edge region, as well as radially from a root section of the airfoil to a tip section of the airfoil to define a central cavity of the airfoil. The cooling passageway is located within the central cavity at the trailing edge region. The column of flow separators are located in the cooling passageway adjacent the trailing edge. The column of flow separators includes a first flow separator having a first longitudinal axis offset to a second flow separator having a second longitudinal axis.
Abstract:
In a featured embodiment, a lost core assembly includes a ceramic component having a tapered shape in a radial direction. A refractory metal component extends radially from the ceramic core component. A method of molding a gas turbine engine component is also disclosed.
Abstract:
A component for a gas turbine engine, according to an exemplary aspect of the present disclosure includes, among other things, a body portion and a cooling circuit disposed inside of the body portion. The cooling circuit includes a first baffle received within a first core cavity that extends inside of the body portion, a second baffle received within a second core cavity that extends inside of the body portion, and a first rib disposed between the first core cavity and the second core cavity. The first baffle is in fluid communication with the second baffle through the first rib.
Abstract:
A core has a body that includes a cooling passage portion with a film cooling passage portion extending there from to a film cooling hole portion. An exterior airfoil portion is connected to the film cooling hole portion and is spaced apart from the cooling passage portion to provide a space surrounding the film cooling hole portion that corresponds to an exterior airfoil wall.
Abstract:
A gas turbine engine component comprises an airfoil with a suction side and pressure side extending from a leading edge to a trailing edge. There are a plurality of cooling holes adjacent the leading edge, with the cooling holes having a non-circular shape, with a longer dimension and a smaller dimension. The airfoil defines a radial direction from a radially outer end to a radially inner end, and radially outer of the cooling holes spaced toward the radially outer end, which have the longer dimension extending closer to parallel to the radial direction. Radially inner cooling holes closer to the radially inner end having the longer dimension extend to be closer to perpendicular relative to the radial direction compared to the radially outer cooling holes.
Abstract:
A turbine vane assembly for a gas turbine engine is disclosed and includes an airfoil rotatable about a first axis transverse to an engine longitudinal axis. The airfoil includes an endwall and at least one protrusion disposed on the endwall configured for obstructing flow through a gap between the endwall and a static structure of the gas turbine engine.
Abstract:
A pivoting turbine vane has an airfoil, an inner bearing race and an outer bearing race, with the inner and outer bearing races on a pivot axis of the pivoting turbine vane. There are cooling air passages through at least one of the inner and outer bearing races to provide cooling air from a remote facing face of at least one of the inner and outer bearing races to an airfoil facing face of at least one of the inner and outer bearing races. A turbine section is also disclosed.
Abstract:
A component for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a body portion, a cooling circuit disposed within the body portion and including at least a first cavity and a microcircuit in fluid communication with the first cavity. A plunged hole intersects at least a portion of the microcircuit.