Abstract:
A gas turbine engine component comprises a blade having a leading edge and a trailing edge. The blade is mounted to a disc and configured for rotation about an axis. A platform supports the blade, and has a fore edge portion at the leading edge and an aft edge portion at the trailing edge. At least one of the fore edge portion and aft edge portion includes a mouth portion defined by an inner wing and an outer wing spaced radially outward of the inner wing. At least one coverplate is retained against the disc by the inner wing. A gas turbine engine is also disclosed.
Abstract:
A rotor blade according to an exemplary aspect of the present disclosure includes, among other things, a platform, an airfoil that extends from the platform, a first cooling core that extends at least partially inside the airfoil, a second cooling core inside of the platform and a first cooling hole that extends between a mate face of the platform and the second cooling core.
Abstract:
A damper seal for a gas turbine engine rotor assembly has an axially elongated body with a leading edge, a trailing edge, a pressure side, and a suction side. The elongated body includes a first enlarged portion formed on the pressure side at the leading edge and a second enlarged portion formed on the suction side adjacent the trailing edge.
Abstract:
A gas turbine engine component array includes first and second components each having a platform. The platforms are arranged adjacent to one another and provide a gap. A seal is arranged circumferentially between the first and second components and in engagement with the platforms to obstruct the gap. A cooling hole is provided in the seal and is in fluid communication with the gap. The cooling hole has an increasing taper toward the gap.
Abstract:
One exemplary embodiment of this disclosure relates to a gas turbine engine including a component. The component includes a platform having a mateface on a circumferential side thereof. The platform including a core passageway configured to communicate fluid to the mateface.
Abstract:
A component for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a platform that axially extends between a leading edge and a trailing edge, circumferentially extends between a first mate face and a second mate face, and includes a gas path surface and a non-gas path surface. The component defines at least one cavity that extends at least partially inside of the component. A first plurality of cooling holes extends from the at least one cavity to at least one of the first mate face and the second mate face and a second plurality of cooling holes extends from either the at least one cavity or the non-gas path surface to the gas path surface.
Abstract:
An assembly according to an exemplary aspect of the present disclosure includes, among other things, a disk, a cover plate providing a cavity at a first axial side of the disk, a passageway including an inlet provided by a notch in at least one of the disk and the cover plate in fluid communication with the cavity, and the passageway extending from the inlet to an exit provided at a second axial side of the disk opposite the first axial side, the exit in fluid communication with the inlet, and the passageway configured to provide fluid flow from the cavity to the exit.
Abstract:
A gas turbine engine component has first and second components each having a platform with an upper surface and a lower surface and with a plurality of side faces extending between the upper and lower surfaces. The platforms are arranged adjacent to one another such that one side face of the platform faces a mating side face of an adjacent platform. At least one cooling hole is formed within the platform and has an inlet to receive a cooling flow and an outlet at least at one of the side faces. The at least one cooling hole increases in size in a direction toward the outlet. A method of cooling a gas turbine engine is also disclosed.
Abstract:
A gas turbine engine includes a turbine section that has a disk rotatable about an axis. The disk has circumferentially-spaced blade mounting features and radially outer rim surfaces extending circumferentially between the blade mounting features. Turbine blades are mounted circumferentially around the disk in the blade mounting features. Seals are arranged radially outwards of the disk adjacent the radially outer rim surfaces such that there are respective passages between the seals and the radially outer rim surfaces. The radially outer rim surfaces include radially-extending protrusions that extend into the respective passages.
Abstract:
A gas turbine engine component array includes first and second components each having a platform. The platforms are arranged adjacent to one another and provide a gap. A seal is arranged circumferentially between the first and second components and in engagement with the platforms to obstruct the gap. A cooling hole is provided in the seal and is in fluid communication with the gap. The cooling hole has an increasing taper toward the gap.