Abstract:
A component for a gas turbine engine includes a wall that adjoins an interior cooling passage and provides an exterior surface. A film cooling hole fluidly connects the interior cooling passage and the exterior surface. The film cooling passage includes inlet and outlet passages that fluidly interconnect and adjoin one another in a misaligned non-line of sight relationship.
Abstract:
A method for forming an airfoil includes forming a ceramic core, forming a refractory metal core using additive manufacturing, joining the ceramic core and the refractory metal core to form a hybrid core, and casting the airfoil around the hybrid core. The ceramic core is used to define an internal cavity of the airfoil. The refractory metal core has an upstream end and a downstream end. The upstream end has a lateral thickness greater than a lateral thickness of the downstream end. The refractory metal core is used to define a trailing edge cavity within the airfoil. The trailing edge cavity is in flow communication with the internal cavity of the airfoil and trailing edge slots located on an outer surface of the airfoil near a trailing edge. This method provides for an airfoil having a trailing edge cavity of variably thickness and casting cores used for their manufacture.
Abstract:
A stage of a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a row of flow directing components circumferentially disposed about a centerline axis and at least one flow directing component of the row having at least one design characteristic that is dissimilar from a corresponding design characteristic of at least one other flow directing component of the row.
Abstract:
A lubricant tank includes a lubricant tank discharge passageway at least partially within the lubricant tank body, a porous media mounted within the lubricant tank body.
Abstract:
A hybrid core for manufacturing high temperature parts includes a non-refractory metal portion and a refractory metal portion wherein at least a portion of the non-refractory metal portion and the refractory metal portion are manufactured by using an additive manufacturing process.
Abstract:
A component for a gas turbine engine includes a wall and a cooling hole. The wall has a first surface and a second surface. The second surface is exposed to hot gas flow. The cooling hole extends through the wall. The cooling hole includes a metering section extending from an inlet in the first surface of the wall to a transition, a diffusing section extending from the transition to an outlet in the second surface of the wall, a cusp on the transition, and a first longitudinal ridge extending along the diffusing section between the transition and the outlet. The first longitudinal ridge divides the diffusing section into first and second lobes.
Abstract:
A gas turbine engine component includes a gas path wall having a first and second opposing surfaces and a baffle positioned along the gas path wall. The baffle has impingement holes for directing cooling fluid onto the first surface of the gas path wall. A cooling hole is formed in the gas path wall and extends from a metering section having an inlet in the first surface through a transition to a diffusing section having an outlet in the second surface. A longitudinal ridge extends along the cooling hole between the transition and the outlet. The longitudinal ridge divides the diffusing section of the cooling hole into first and second lobes.
Abstract:
A cooling system for a gas turbine engine comprises a passage capable of receiving cooling air, a compartment radially adjacent thereto and axially aligned therewith, an opening therebetween, a valve within the opening, and a heat exchanger received in the compartment. The valve is moveable between a maximum open position and a minimum open position for increasing or decreasing airflow from the passage into the compartment. At the valve minimum open position, a leakage path is provided between the passage and the compartment, whereby cooling air is capable of passing from the passage to the compartment and toward the heat exchanger at all valve positions. A gas turbine engine is also disclosed.
Abstract:
A gas turbine engine component subjected to a flow of high temperature gas includes a wall having first and second surfaces and a cooling hole extending through the wall. The cooling hole includes an inlet located at the first surface, an outlet located at the second surface, a metering section extending downstream from the inlet, and a diffusing section extending from the metering section to the outlet. The diffusing section includes a first lobe diverging longitudinally and laterally from the metering section and having a first downstream end adjacent the outlet and spaced from the inlet by a first distance, a second lobe diverging longitudinally from the metering section and having a second downstream end adjacent the outlet and spaced from the inlet by a second distance different from the first, and a transition region positioned between the lobes, the transition region having a third downstream end adjacent the outlet.
Abstract:
A gas turbine engine component includes an airfoil and a platform. The airfoil has a pressure side and an opposite suction side. The platform is connected to the airfoil and has a first curved edge to the suction side of the airfoil and a second curved edge to the pressure side of the airfoil. The first and second curved edges extend along a surface of the platform having a neutral elevation with respect to a reference axisymmetrical platform surface for the gas turbine engine.