Abstract:
Un arreglo que comprende: una superficie de sustrato, en donde la superficie del sustrato incluye sitios de enlazamiento para una partícula biológica y también sitios que no enlazan la partícula biológica, caracterizado porque dichos sitios de enlazamiento incluyen sitios de enlazamiento de iones metálicos, o sitios de enlazamiento para el metal catiónico divalente, en donde los sitios de enlazamiento sobre la superficie de sustrato tienen cada uno una forma y un tamaño; y una partícula biológica dispuesta sobre cada uno de los sitios de enlazamiento, caracterizada porque la partícula biológica es una proteína, un anticuerpo, o una célula.
Abstract:
A novel coordination chemistry or metal ion binding approach to controlling the site- isolation and orientation of virus particles, such as TMV, on a nanoarray template generated by lithography including Dip Pen Nanolithography. By using the surface chemistry that is inherent in many viruses, metal-ion based or inorganic coordination chemistry was used to immobilize individual virus particles without the need for their genetic modification. Single particle control will enable a wide variety of studies involving viruses that are not possible with microarrays because of the size mismatch between the architecture of the virus and the features that make up such arrays. These include: single particle, single cell infectivity studies, the exploration of such structures as templates in materials synthesis and molecular electronics, and studies aimed at understanding how surface presentation can influence their bioactivity. This is a pioneering example of such control at the single-particle level, and therefore, commercial use of nanoarrays in biological systems.
Abstract:
Methods and articles providing for precise aligning, positioning, shaping, and linking of nanotubes and carbon nanotubes. An article comprising: a solid surface comprising at least two different surface regions including: a first surface region which comprises an outer boundary and which is adapted for carbon nanotube adsorption, and a second surface region which is adapted for preventing carbon nanotube adsorption, the second region forming an interface with the outer boundary of the first region, at least one carbon nanotube which is at least partially selectively adsorbed at the interface. The shape and size of the patterns on the surface and the length of the carbon nanotube can be controlled to provide for selective interfacial adsorption.
Abstract:
A nanoarray template utilizing coordination chemistry or metal ion binding to control the site-isolation and orientation of virus particles is provided. The nanoarray template is generated by lithography including Dip Pen Nanolithography. The surface chemistry that is inherent in many viruses, metal-ion based or inorganic coordination chemistry is used to immobilize individual virus particles without the need for their genetic modification. Single particle control enables a wide variety of studies involving viruses that are not possible with microarrays, including single particle, single cell infectivity studies, exploration of such structures as templates in materials synthesis and molecular electronics, and studies aimed at understanding how surface presentation influences their bioactivity. This is an example of such control at the single-particle level, and therefore, commercial use of nanoarrays in biological systems.