Abstract:
Adenosine and xanthine derivatives, and compositions comprising those compounds, are potent selective agonists and antagonists of adenosine receptors. The derivatives and compositions are used to treat conditions, including certain cardiac arrhythmias.
Abstract:
Adenosine and xanthine derivatives, and compositions comprising those compounds, are potent selective agonists and antagonists of adenosine receptors. The derivatives and compositions are used to treat conditions, including certain cardiac arrhythmias.
Abstract:
Adenosine and xanthine derivatives, and compositions comprising those compounds, are potent selective agonists and antagonists of adenosine receptors. The derivatives and compositions are used to treat conditions, including certain cardiac arrhythmias.
Abstract:
Adenosine and xanthine derivatives, and compositions comprising those compounds, are potent selective agonists and antagonists of adenosine receptors. The derivatives and compositions are used to treat conditions, including certain cardiac arrhythmias.
Abstract:
Adenosine and xanthine derivatives, and compositions comprising those compounds, are potent selective agonists and antagonists of adenosine receptors. The derivatives and compositions are used to treat conditions, including certain cardiac arrhythmias.
Abstract:
This invention concerns methods for identifying A2B adenosine receptor agonists and antagonists as well as methods for using A2B adenosine receptor antagonists to treat cell proliferation orders mediated by the A2B adenosine receptor.
Abstract:
Adenosine and xanthine derivatives, and compositions comprising those compounds, are potent selective agonists and antagonists of adenosine receptors. The derivatives and compositions are used to treat conditions, including certain cardiac arrhythmias.