Abstract:
An improved oligopeptide composition for use in a fluorescent polarization immunoassay for a high molecular weight analyte is disclosed, along with a kit and a method using the composition. The composition comprises an oligopeptide selected by a screening procedure in which a plurality of different oligopeptides having respective amino acid sequences that represent sequential overlapping segments of the analyte amino acid sequence, and a fluorescent label bound thereto. The screening process further includes screening to select a composition which exhibits fluorescence enhancement upon binding the analyte. A preferred embodiment of the oligopeptide is one having an amino acid sequence which does not form internal disulfide bridges. Such a preferred oligopeptide will generally have no more than one cysteine residue. In a further preferred embodiment, the fluorescent label is tetramethylrhodamine or a cyanine dye. The kit may be packaged with instructions directing a user to prepare an assay solution containing the monoclonal antibody and the oligopeptide in certain respective concentrations. The composition, method and kit are constructed to detect nanomolar concentrations of the analyte.
Abstract:
Fluorescent energy transfer dyes capable of moving between a more stacked configuration to exhibit fluorescent quenching and a more spaced configuration to exhibit fluorescence can be conjugated to a peptide epitope or nucleic acid for use in the detection of an unknown antibody in bulk solution. The resulting labelled peptide reagent can be used in an immunoassay procedure by placing it in bulk solution along with the unknown antibody to be detected. When the antibody binds to the peptide epitope, the pair of dyes carried by the peptide epitope will have their configuration altered from a stacked to an unstacked configuration and will exhibit a fluorescent increase in response thereto.
Abstract:
An improved oligopeptide composition for use in a fluorescent polarization immunoassay for a high molecular weight analyte is disclosed, along with a kit and a method using the composition. The composition comprises an oligopeptide selected by a screening procedure in which a plurality of different oligopeptides having respective amino acid sequences that represent sequential overlapping segments of the analyte amino acid sequence, and a fluorescent label bound thereto. The screening process further includes screening to select a composition which exhibits fluorescence enhancement upon binding the analyte. A preferred embodiment of the oligopeptide is one having an amino acid sequence which does not form internal disulfide bridges. Such a preferred oligopeptide will generally have no more than one cysteine residue. In a further preferred embodiment, the fluorescent label is tetramethylrhodamine or a cyanine dye. The kit may be packaged with instructions directing a user to prepare an assay solution containing the monoclonal antibody and the oligopeptide in certain respective concentrations. The composition, method and kit are constructed to detect nanomolar concentrations of the analyte.
Abstract:
Fluorescent energy transfer dyes capable of moving between a more stacked configuration to exhibit fluorescent quenching and a more spaced configuration to exhibit fluorescence can be conjugated to a peptide epitope or nucleic acid for use in the detection of an unknown antibody in bulk solution. The resulting labelled peptide reagent can be used in an immunoassay procedure by placing it in bulk solution along with the unknown antibody to be detected. When the antibody binds to the peptide epitope, the pair of dyes carried by the peptide epitope will have their configuration altered from a stacked to an unstacked configuration and will exhibit a fluorescent increase in response thereto.