Abstract:
A polymer and coating composition containing the polymer are provided that are useful in coating applications such as, for example, food or beverage packaging containers. The polymer preferably includes a backbone having one or more polycyclic groups. In one embodiment, the polymer is a polyester and, more preferably, a polyester-urethane polymer. In one embodiment, the one or more polycyclic groups is a tricyclic or higher group.
Abstract:
An oxygen-scavenging composition is provided that includes an oxygen-scavenging component and a catalyst. The oxygen-scavenging component, which in preferred embodiments is suitable for use in packaging articles, includes two or more oxygen- scavenging groups having different scavenging properties. In one embodiment, one of the oxygen-scavenging groups is an unsaturated bicyclic group.
Abstract:
An oxygen-scavenging component and methods for producing the oxygen- scavenging component are provided. The oxygen- scavenging component, which in preferred embodiments is suitable for use in packaging articles, includes an oxygen- scavenging group preferably having at least one double bond. The oxygen-scavenging component may be combined with a polymer and/or an oxidation catalyst to form an oxygen-scavenging composition.
Abstract:
An improved easily openable end for a metal container, and aL method of manufacturing the end are disclosed. The metal container is manufactured from a can body and two can ends, one of which is easily openable. The easily openable can end is manufactured from a metal substrate having a score line on its external surface that permits easy removal of at least a portion of the can end from the can body. The score line of the easily openable can end is coated with a iradiat ion- curable coating composition that impa~ts corrosion resistance along the score line of the easily openable can end.
Abstract:
A multi-coat coating system having an undercoat composition and an overcoat composition, wherein the undercoat, overcoat or both the undercoat and overcoat contain a polymer having segments of a specified formula and are substantially free of polyhydric phenols having estrogenic activity greater than or equal to that of bisphenol S. The coating system is suitable for use on a food-contact surface of food or beverage containers.
Abstract:
The present invention provides an oxygen-scavenging composition and articles formed therefrom. The oxygen-scavenging composition preferably includes an oxygen-scavenging polymer having an unsaturated bicyclic group, a based polymer, and an optional oxidation catalyst. The base polymer preferably includes a substituted or unsubstituted addition backbone, which may include heteratoms.
Abstract:
An oxygen-scavenging composition is provided that includes an oxygen-scavenging polymer and a catalyst. The oxygen-scavenging polymer, which in preferred embodiments is suitable for use in packaging articles, includes a base polymer having a backbone, and an unsaturated side chain attached to the backbone. In one embodiment, the unsaturated side chain comprises includes at least one aliphatic carbon-carbon double bond or two or more carbon-carbon double bonds.
Abstract:
The present invention provides aqueous dispersions that, for example, include the reaction product of an oxirane-functional vinyl addition polymer having an oxirane functionality between 0.5 and 5; an acid-functional polymer having an acid number 30 to 500; and a tertiary amine. Also described are coating compositions containing the dispersion and methods of forming the dispersion.
Abstract:
Polycarbonates made from polyhydric phenols that preferably exhibit estrogenic activity less than bisphenol S exhibit properties such as high impact strengths, moderate to high glass transition temperatures, chemical resistance, and good color and clarity similar to conventional BPA-derived polycarbonates.
Abstract:
Dental materials may be made from polyhydric phenols that are non-genotoxic and exhibit estrogenic activity less than that of bisphenol S, while exhibiting properties such as strength and flexibility comparable to those of conventional BPA-derived dental materials.