Abstract:
According to an embodiment of the present invention there is provided an apparatus for controlling a sub-system of a wind turbine. The apparatus comprises a cooling system comprising first and second heat exchangers, and a fluid circuit arranged to enable a coolant to flow between the first and second heat exchangers; and a processor. The processor is configured to: monitor one or more operational parameters of the cooling system; determine an icing risk based on the one or more operational parameters; and generate a control signal for output to the wind turbine sub-system in dependence on the determined icing risk.
Abstract:
Embodiments are generally directed to techniques for operating a wind turbine of a wind power plant. An associated method comprises determining, using one or more sensors of the wind turbine, a first power production level of the wind turbine; determining, during an unconstrained operation of the wind turbine, one or more available power correction factors using the first power production level; determining, using one or more wind power parameters applied to a predefined model for estimating an available power of the wind turbine, an estimated available power value; adjusting the estimated available power value using the one or more available power correction factors to produce the available power value; and controlling, using the available power value, the wind turbine to produce a second power production level.
Abstract:
There is presented a wind turbine system (1), wherein the wind turbine system is comprising a support structure (3), a plurality of wind turbine modules (2) mounted to the support structure (3) wherein each of the plurality of wind turbine modules comprises a rotor (7), and wherein the wind turbine system further comprises a control system (20), wherein the control system (20) is arranged to execute a wind turbine system transition from a first system operational state of the wind turbine system (1) to a second system operational state of the wind turbine system (1), and wherein the wind turbine system transition is performed by executing a plurality of wind turbine module transitions from a first module operational state of a wind turbine module (2) to a second module operational state of the wind turbine module (2) wherein the plurality of wind turbine module transitions are distributed in time with respect to each other.
Abstract:
The invention relates to a method for controlling a yaw offset of a plurality of wind turbines. The method uses a decision function which generates an activation parameter for determining if the yaw offset control of a specific wind turbine should be enabled or disabled. The decision function depends on two or more variables comprising a wind direction variable indicative of the wind direction of the specific wind turbine, and a wind variation variable defining at least a wind variation range where yaw offset control is disabled or enabled. Based on the decision function it is determined if a yaw offset should be added to the current yaw setting of the specific wind turbine.
Abstract:
A method of controlling a wind turbine connected to an electrical grid is provided. The method comprises generating a turbine control reference signal and a grid control reference signal. The turbine control reference signal is provided to a machine side unit of a power or torque control system of the turbine to control the amount of energy generated by the turbine. The grid control reference signal is provided to a line side unit of the power or torque control system to control the amount of energy transferred to the electrical grid based on the grid control reference signal.
Abstract:
A wind turbine control system comprising at least one control module configured to output a control signal for a control mechanism of a wind turbine, and a gain calculator for calculating a gain parameter associated with the control module, wherein the gain parameter is calculated based on a computerised real-time blade model using a determined wind turbine operating point as an input. The blade model may be a blade element momentum model. In another aspect, the invention may be expressed as a method of controlling a control mechanism of a wind turbine.
Abstract:
A wind turbine system is described comprising a plurality of wind turbine modules, each including a rotor, mounted to a support structure including a tower. In use, each rotor has an associated rotating unbalance that defines an unbalance vector. The wind turbine system includes control means configured to coordinate the rotational speeds of the plurality of rotors to attenuate oscillations of the support structure caused by the rotating unbalance of the rotors. Also described is a method of controlling such a wind turbine system. The method comprises coordinating the rotational speeds of the plurality of rotors to attenuate oscillations of the support structure caused by the rotating unbalance of the rotors.
Abstract:
The invention relates to a method for determining dynamic parameters associated with damping properties of a wind turbine. The method involves active excitation of tower oscillations by adjusting the pitch or rotor torque. After the active excitation, the parameters can be determined from the passive decay of the excited oscillations. Alternatively, the oscillations can be actively damped, so that the parameters can be determined from the active decay of the excited oscillations. The method for promoting oscillations may be triggered in response to different events or in response to predetermined times for determining the actual dynamic parameters.
Abstract:
A method of controlling a wind turbine blade of a wind turbine comprising: providing data comprising a plurality of pitch angles of the wind turbine blade and corresponding expected power coefficients for the wind turbine, each pitch angle corresponding to a maximum expected power coefficient for a degradation state of the wind turbine blade; obtaining a current power coefficient of the wind turbine; determining a desired pitch angle for the wind turbine blade, the desired pitch angle being equal to a pitch angle from the dataset corresponding to an expected power coefficient equal to the current power coefficient; and changing a pitch angle of the wind turbine blade to the desired pitch angle.
Abstract:
A method of controlling a wind turbine is provided, comprising identifying an out-of-vertical load acting in a first direction on the wind turbine. A direction of a wind load acting on the wind turbine is determined. If there is a degree of alignment between the direction of the wind load and the first direction, the wind turbine is controlled to reduce the wind load.