Abstract:
A quadcopter has a fuselage and four rotors, each defining a thrust vector. An onboard camera system includes a gimbal with a roll axis and a pitch axis. Right side motors are mounted with a dihedral angle so that their respective thrust vectors intersect at a common focal point located above the fuselage. Left side motors are mounted with a dihedral angle so that their respective thrust vectors intersect at a common focal point located above the fuselage. The tilted thrust vectors provide yaw stability which allows flight yaw control to be used as yaw control of the onboard camera.
Abstract:
An unmanned aerial vehicle (UAV) includes a body that supports breakaway components. One component is a battery pack which powers the vehicle. Two other components are pod assemblies, which each include at least one motor and one propeller. Each motor is supported within a support ring using spokes or filament. The spokes keep the motor firmly stable during operation and also effectively encage the otherwise dangerous spinning propeller. This allows the vehicle to operate with a higher level of safety than conventional UAVs. The breakaway feature can be established using magnets.
Abstract:
A method for synchronizing an audio track that is being recorded at a first location with a video track that is being recorded at a second location, such as on a flying UAV, is disclosed. First, the audio and video recorders being to record sound and video. Then, a GPS receive is used to pick up the very accurate GPS clock signal. A real-time clock is also used locally to generate a real-time value. At a predetermined time, the GPS time data is interrogated and a time-stamp is generated. A video encoder is then used to embed the time-stamp, either during recording, or shortly thereafter. A networked audio recording device records audio with a time stamp acquired from the network. These respective time-stamps are then used in post-processing to accurately synchronize the audio and video tracks.
Abstract:
A propeller drive assembly includes an electric motor having a stator and a rotor. During operation the motor generates heat. A propeller made from a thermally conductive plastic includes a hub that is secured to the rotor portion of the motor so that the heat generated within the motor is transferred by conductance through the thermally conductive hub and propeller and then, by convection, is absorbed by the surrounding air, as the propeller rotates through the air. A thermally conductive interface material can be positioned between the rotor portion of the motor and the hub of the propeller to increase the thermal efficiency of the heat transfer between the motor and the propeller. A thermally conductive grease can be used as the interface material and an O-ring seal can be provided about the rotor to prevent the grease from escaping during motor operation.
Abstract:
An unmanned aerial vehicle (UAV) includes a fuselage that supports breakaway components that are attached using magnets. One component is a battery pack which powers the vehicle. Another component is a rotor set including two identical pod pairs that each support a motor and a propeller. Each motor is attached to a hub assembly that includes a plurality of spokes captured in a motor hub and sandwiched by a rigid motor printed circuit board on top and a rigid hub plate. The hub assembly construction is rigid in plane and functions to keep the motor firmly stable during operation. The hub assembly is compliant and resilient when impacted parallel to the plane. Other features of the pod pairs encage the otherwise dangerous spinning propeller. This allows the vehicle to operate with a higher level of safety than conventional UAVs.
Abstract:
A modular unmanned aerial vehicle (UAV) can include a main body and one or more peripherals configured to be removably attached to the main body. The main body can be configured to identify the peripheral, such as through the provision of an identifying signal on the provisional. The processor can cause the UAV to execute a function based at least in part on the identification of the attached peripheral, or by user interaction with the peripheral or another component of the UAV.
Abstract:
A unmanned aerial vehicle (UAV) includes a body with plurality of motors, a motor controlling circuit, a microprocessor for controlling the flight state of the UAV, a plurality of motion sensors, and a capacitive touch sensor incorporated into a battery. When the user grasps the UAV by the battery, the touch sensor is activated and the microprocessor alters the flight state of the UAV.
Abstract:
A method is provided for allowing UAV pilots to create a flight path profile and upload the same to a central server, allowing access to other UAV pilots. The method includes the steps of having creating a first flight path profile, uploading the flight path profile to a central server, allowing access of the flight path profile to others, and downloading the first flight path profile to a UAV so that the UAV follows the downloaded first flight profile. The flight path profile includes control of three dimensional motion and orientation of a UAV, control of the view orientation of a camera, as well as other camera settings such as video and still image modes, frame rate, and exposure, altitude and speed and dwell times.
Abstract:
A propeller drive assembly includes an electric motor having a stator and a rotor. During operation the motor generates heat. A propeller made from a thermally conductive plastic includes a hub that is secured to the rotor portion of the motor so that the heat generated within the motor is transferred by conductance through the thermally conductive hub and propeller and then, by convection, is absorbed by the surrounding air, as the propeller rotates through the air. A thermally conductive interface material can be positioned between the rotor portion of the motor and the hub of the propeller to increase the thermal efficiency of the heat transfer between the motor and the propeller. A thermally conductive grease can be used as the interface material and an O-ring seal can be provided about the rotor to prevent the grease from escaping during motor operation.
Abstract:
A method for synchronizing an audio track that is being recorded at a first location with a video track that is being recorded at a second location, such as on a flying UAV, is disclosed. First, the audio and video recorders being to record sound and video. Then, a GPS receive is used to pick up the very accurate GPS clock signal. A real-time clock is also used locally to generate a real-time value. At a predetermined time, the GPS time data is interrogated and a time-stamp is generated. A video encoder is then used to embed the time-stamp, either during recording, or shortly thereafter. A networked audio recording device records audio with a time stamp acquired from the network. These respective time-stamps are then used in post-processing to accurately synchronize the audio and video tracks.