Abstract:
A heating assembly for a blade of a wind turbine generator, said heating assembly comprising: a heat reservoir positioned within a cavity of said blade, said heat reservoir in communication with a heat source; said heat reservoir including a plurality of orifices for venting hot air from said heat reservoir.
Abstract:
A method for thermal conditioning of a wind turbine nacelle is disclosed. The method comprises the steps of: Obtaining historical, statistical and/or forecast data relating to ambient conditions of the wind turbine, e.g. in the form of wind data, weather forecasts and/or thermal data of the wind turbine. Calculating a setting for at least one conditioning unit, e.g. a cooling unit or a heating unit, arranged in an interior part of the nacelle, based on the obtained historical, statistical and/or forecast data, and operating the conditioning unit(s) in accordance with the calculated setting. Measuring at least one parameter reflecting a temperature in the interior part of the nacelle. Adjusting the setting(s) for the conditioning unit(s) based on the measured parameter(s), and operating the conditioning unit(s) in accordance with the adjusted setting(s). The setting(s) is/are initially calculated based on the historical, statistical and/or forecast data, thereby providing a qualified starting point. The setting(s) is/are then adjusted or fine tuned on the basis of actual temperatures of the nacelle, thereby taking these into account and reaching optimal setting(s) quickly. An artificial intelligence (AI) system may be used. The method may include control of temperature and/or humidity inside the nacelle and/or temperature of components arranged in the nacelle.
Abstract:
The present invention relates to a wind turbine nacelle having a top face with a longitudinal extension in a wind direction, comprising a cooling device extending from the top face of the nacelle and a cover having at least one inner face. The cooling device is enclosed by the top face of the nacelle and the inner face of the cover.
Abstract:
A heating assembly for a wind turbine: generator, the assembly comprising:: a heat reservoir mounted within a blade of the wind turbine generator; a heat source for supplying heat to the heat reservoir; a plurality of thermal conductors projecting front said heat reservoir to a surface of said blade.
Abstract:
The present invention relates to a wind turbine nacelle having a top face with a longitudinal extension in a wind direction. The nacelle comprises a cooling device having a cooling area and extending from the first face of the nacelle, and a cover having at least one inner face and at least a front edge facing the wind direction. The cooling device is enclosed by the first face of the nacelle and the inner face of the cover and is arranged in a front distance of at least 440 mm from the front edge of the cover.
Abstract:
The present invention relates to a wind turbine nacelle comprising a front end facing a wind flow and a rear end arranged downwind from the front end; a first face with a longitudinal extension between the front end and the rear end of the nacelle, the longitudinal extension of the nacelle having a total length; a velocity boundary layer, which is created by the wind flow along the first face from the front end to the rear end, the velocity boundary layer increasing in thickness along the first face and the thickness being lowest at the front end; and a free flow cooling device extending from the first face of the nacelle, the free flow cooling device comprising a cooling area. Furthermore, the cooling area is arranged in relation to the thickness of the velocity boundary layer.
Abstract:
A heat exchanger assembly for cooling a heat-generating component, such as a generator or power electronics module, within a wind turbine nacelle comprises a thermoelectric element, such as a Peltier element, having a first section arranged in a first region of relatively high temperature in contact with the heat-generating component or in the vicinity thereof, and a second section arranged in a second region of a relatively low temperature. The thermoelectric element is configured to transfer heat from the first region of relatively high temperature to the second region of relatively low temperature with consumption of electrical energy. A source of electrical energy is provided for the thermoelectric element, and a control unit may be provided for controlling the energy supply in order to control the temperature of the component or surface area cooled by the thermoelectric element. A further cooling element including a so-called heat pipe may be provided to enhance cooling efficiency.
Abstract:
The present invention relates to a wind turbine having a cooling system, which wind turbine comprises a nacelle in connection with which one or more wind turbine components are arranged. The cooling system comprises at least one cooling circuit arranged to lead a heat transfer medium to and from one or more of the wind turbine components, a least one cooling device arranged to cool the heat transfer medium, at least one pump arranged in connection with the at least one cooling circuit to circulate the heat transfer medium in the cooling circuit, and at least one medium tank arranged in connection with the cooling circuit. The at least one medium tank is arranged inside the nacelle.
Abstract:
The present invention relates to a wind turbine nacelle having a first face with a longitudinal extension in a wind direction, comprising a cooling device having a cooling area and extending from the first face of the nacelle, and a cover having at least one inner face, the cooling device being enclosed by the first face of the nacelle and the inner face of the cover. A first distance between at least one of the faces and the cooling area is at least 30 mm.
Abstract:
A heat exchanger assembly for cooling a heat-generating component, such as a generator or power electronics module, within a wind turbine nacelle comprises a thermoelectric element, such as a Peltier element, having a first section arranged in a first region of relatively high temperature in contact with the heat-generating component or in the vicinity thereof, and a second section arranged in a second region of a relatively low temperature. The thermoelectric element is configured to transfer heat from the first region of relatively high temperature to the second region of relatively low temperature with consumption of electrical energy. A source of electrical energy is provided for the thermoelectric element, and a control unit may be provided for controlling the energy supply in order to control the temperature of the component or surface area cooled by the thermoelectric element. A further cooling element including a so-called heat pipe may be provided to enhance cooling efficiency.