Abstract:
The density of a discrete piece of hard tissue such as a bone in a patient may be determined by either of two methods. In a first method, an impulse of energy is introduced into the tissue, and the resulting vibration in the hard tissue is sensed and analyzed to compute the modal damping factor of the tissue, the modal damping factor being directly related to the density of the tissue. In a second method, a continuous energy input is introduced into the hard tissue. The resulting vibration in the tissue is measured with a mechano-electrical vibration transducer (26) and a modal damping factor is calculated. The electro-mechanical vibration transducer (26) of the preferred embodiment measures the pressure with which the transducer (26) is pressed against the patient's flesh and only produces the continuous energy input when a predetermined pressure is achieved which is sufficient to prevent any significant vibration of the flesh surrounding the bone.
Abstract:
The integrity of structures may be determined by either one of two methods. In a first method, an impulse of energy is introduced into the structure (20), such as by striking the structure (20), and the induced vibration is measured and the modal damping factor is calculated, the modal damping factor being directly related to the integrity of the structure (20). In a second method, a continous energy input is provided to the structure (20) for inducing a continous vibration in the structure (20). This continous vibration is measured with a transducer (28) and a modal damping factor is calculated with a computer (32). The computer uses an algorithm to estimate the modal damping factor of the structure by calculating a theoretical response of an idealized system from several assumed parameters and varying those parameters.
Abstract:
The fatigue integrity of metallic materials may be determined be either one of two methods. In a first method, an impulse of energy is introduced into the metallic material, such as by striking the metallic material (20), and the induced vibration is sensed and analyzed in order to compute the damping factor thereof, the damping factor being directly related to the fatigue thereof. With this method, a transducer (28) is coupled to the metallic material and its output is amplified by an amplifier (30) before being input to a computer (32) which determines the damping factor. In a second method, a continuous energy input is provided to the metallic material, such as by utilizing a frequency generator coupled to a power amplifier whose output drives a transducer such as a speaker or the like for inducing a continuous vibration in the metallic material. This continuous vibration is measured with a transducer, an amplifier, and a damping factor calculated with a computer as in the first method.
Abstract:
The integrity (density) of discrete pieces of hard tissue (bones) in a patient may be determined by either one of two methods. In a first method, an impulse of energy is introduced into the bone, such as by striking the patient's bone, and the induced vibration is sensed and analyzed in order to compute the damping factor thereof, the damping factor being directly related to the density thereof. With this method, a transducer (26) is coupled to the bone (24) and its output is amplified by an amplifier (28) before input to a computer (30) which determines the damping factor. In a second method, a continuous energy input is provided to the bone, such as by utilizing a frequency generator (36) coupled to a power amplifier (38) whose output drives a transducer (40) such as a speaker for inducing a continuous vibration in the bone. This continuous vibration is measured with a transducer (26), an amplifier (28), and a damping factor calculated with a computer (30) as in the first method.
Abstract:
The fatigue integrity of metallic materials may be determined be either one of two methods. In a first method, an impulse of energy is introduced into the metallic material, such as by striking the metallic material (20), and the induced vibration is sensed and analyzed in order to compute the damping factor thereof, the damping factor being directly related to the fatigue thereof. With this method, a transducer (28) is coupled to the metallic material and its output is amplified by an amplifier (30) before being input to a computer (32) which determines the damping factor. In a second method, a continuous energy input is provided to the metallic material, such as by utilizing a frequency generator coupled to a power amplifier whose output drives a transducer such as a speaker or the like for inducing a continuous vibration in the metallic material. This continuous vibration is measured with a transducer, an amplifier, and a damping factor calculated with a computer as in the first method.
Abstract:
The integrity (density) of discrete pieces of hard tissue (bones) in a patient may be determined by either one of two methods. In a first method, an impulse of energy is introduced into the bone, such as by striking the patient's bone, and the induced vibration is sensed and analyzed in order to compute the damping factor thereof, the damping factor being directly related to the density thereof. With this method, a transducer (26) is coupled to the bone (24) and its output is amplified by an amplifier (28) before input to a computer (30) which determines the damping factor. In a second method, a continuous energy input is provided to the bone, such as by utilizing a frequency generator (36) coupled to a power amplifier (38) whose output drives a transducer (40) such as a speaker for inducing a continuous vibration in the bone. This continuous vibration is measured with a transducer (26), an amplifier (28), and a damping factor calculated with a computer (30) as in the first method.
Abstract:
The integrity (density) of discrete pieces of hard tissue (bones) in a patient may be determined by either one of two methods. In a first method, an impulse of energy is introduced into the bone, such as by striking the patient's bone, and the induced vibration is sensed and analyzed in order to compute the damping factor thereof, the damping factor being directly related to the density thereof. With this method, a transducer (26) is coupled to the bone (24) and its output is amplified by an amplifier (28) before input to a computer (30) which determines the damping factor. In a second method, a continuous energy input is provided to the bone, such as by utilizing a frequency generator (36) coupled to a power amplifier (38) whose output drives a transducer (40) such as a speaker for inducing a continuous vibration in the bone. This continuous vibration is measured with a transducer (26), an amplifier (28), and a damping factor calculated with a computer (30) as in the first method.
Abstract:
The fatigue integrity of metallic materials may be determined be either one of two methods. In a first method, an impulse of energy is introduced into the metallic material, such as by striking the metallic material (20), and the induced vibration is sensed and analyzed in order to compute the damping factor thereof, the damping factor being directly related to the fatigue thereof. With this method, a transducer (28) is coupled to the metallic material and its output is amplified by an amplifier (30) before being input to a computer (32) which determines the damping factor. In a second method, a continuous energy input is provided to the metallic material, such as by utilizing a frequency generator coupled to a power amplifier whose output drives a transducer such as a speaker or the like for inducing a continuous vibration in the metallic material. This continuous vibration is measured with a transducer, an amplifier, and a damping factor calculated with a computer as in the first method.
Abstract:
The integrity of structures may be determined by either one of two methods. In a first method, an impulse of energy is introduced into the structure (20), such as by striking the structure (20), and the induced vibration is measured and the modal damping factor is calculated, the modal damping factor being directly related to the integrity of the structure (20). In a second method, a continous energy input is provided to the structure (20) for inducing a continous vibration in the structure (20). This continous vibration is measured with a transducer (28) and a modal damping factor is calculated with a computer (32). The computer uses an algorithm to estimate the modal damping factor of the structure by calculating a theoretical response of an idealized system from several assumed parameters and varying those parameters.
Abstract:
The density of a discrete piece of hard tissue such as a bone in a patient may be determined by either of two methods. In a first method, an impulse of energy is introduced into the tissue, and the resulting vibration in the hard tissue is sensed and analyzed to compute the modal damping factor of the tissue, the modal damping factor being directly related to the density of the tissue. In a second method, a continuous energy input is introduced into the hard tissue. The resulting vibration in the tissue is measured with a mechano-electrical vibration transducer (26) and a modal damping factor is calculated. The electro-mechanical vibration transducer (26) of the preferred embodiment measures the pressure with which the transducer (26) is pressed against the patient's flesh and only produces the continuous energy input when a predetermined pressure is achieved which is sufficient to prevent any significant vibration of the flesh surrounding the bone.