Abstract:
A single calcination stage process for the synthesis of homogeneous crystalline lithium nickel cobalt dioxide from either a mechanical mixture of nickel and cobalt oxides, hydroxide or oxyhydroxide or a chemical precipitation of a homogeneous nickel cobalt hydroxide or cobalt nickel cobalt oxyhydroxide is provided. The reactants are calcined in the presence of lithium hydroxide and an alkali metal hydroxide under predetermined oxygen partial pressure and temperature conditions. The products of the process are characterized in having a lithium to transition metal ratio closely approximating to the desired theoretical value.
Abstract:
There is provided a series of novel particulate stabilized lithiated compounds which can be utilized as cathodic materials in lithium ion battery cells. Each particle of the material defines an inner lithiated metal oxide core which acts as an intercalation cathode. A lithium ion conductor coating surrounds the core to stabilize the latter and to improve the electrochemical properties of the material.
Abstract:
A synthesis for lithiated transition metal oxide powders is provided which comprises reacting one or more transition metal compounds with a lithium compound, wherein the lithium compound is in a molten phase. The reaction mixture may contain additives, which act primarily to extend the temperature range of the molten phase of the lithium compound.