Abstract:
A refrigerator includes a vacuum insulated cabinet and a surround lighting feature. The vacuum insulated cabinet includes a liner disposed within a wrapper, which are interconnected by a thermal bridge to form a vacuum cavity therebetween. A wall covering assembly includes a top wall disposed adjacent to and spaced-apart from a top wall of the liner. The wall covering assembly also includes a rear wall disposed adjacent to and spaced-apart from a rear wall of the liner. In assembly, the liner and the wall covering assembly cooperate to define a refrigerator compartment. A cavity is formed between liner and the wall covering assembly. A surround lighting assembly is disposed around an opening into the refrigerator compartment and is powered by a wiring system concealed by the wall covering assembly.
Abstract:
A refrigerator is provided herein that includes a cabinet defining a refrigerated compartment and a machine compartment. A compressor is disposed within the machine compartment and adapted to compress a refrigerant within a refrigerant line. A heat exchanger is positioned in communication with the compressor and is adapted to reject heat from a refrigerant into the machine compartment. A fan is disposed between the heat exchanger and compressor. The fan is adapted to draw air from an area adjacent the machine compartment and through the heat exchanger. A funnel is disposed between the heat exchanger and the fan and directs air toward the fan. A tunnel is disposed between the fan and the compressor and directs forced air from the fan toward the compressor.
Abstract:
An appliance includes a metallic outer wrapper having sidewalls, a wrapper backwall and a machine wall. At least one metallic inner liner has liner walls and a liner backwall, wherein the metallic outer wrapper and the at least one metallic inner liner are coupled together at a trim breaker to define a structural cabinet having a hermetically sealed interior cavity defined between the metallic outer wrapper and the at least one metallic inner liner. The trim breaker defines a front face of the structural cabinet. At least one trim breaker conduit extends through the wrapper and liner backwalls wherein the trim breaker conduit defines a conduit through the structural cabinet, and wherein the structural cabinet is hermetically sealed at the trim breaker conduit.
Abstract:
An appliance includes an outer wrapper and an inner liner that are connected to define a structural cabinet with an insulating cavity defined between the outer wrapper and the inner liner. An insulating material is disposed within the insulating cavity, wherein an at least partial vacuum is defined within the insulating cavity. The at least partial vacuum defines a pressure differential between the exterior of the structural cabinet and the insulating cavity, the pressure differential defining an inward compressive force. Wrapper structural reinforcements are disposed proximate the outer wrapper. Liner structural reinforcements are disposed proximate the inner liner, wherein each of the wrapper and liner structural reinforcements extend into the insulating cavity and are free of engagement with one another. The wrapper and liner structural reinforcements are positioned to resist the inward compressive force.
Abstract:
An operable panel for an appliance includes a metallic outer wrapper having a perimetrical wrapper edge that partially defines a perimetrical breaker channel, an inner liner and a plurality of corner brackets disposed proximate the perimetrical wrapper edge. Each corner bracket cooperates with the perimetrical wrapper edge to fully define the perimetrical breaker channel. A trim breaker is adhered to the metallic outer wrapper and the corner brackets at the perimetrical breaker channel and having a liner channel that receives a portion of the inner liner. The trim breaker extends between the inner liner and the outer wrapper. An insulation material is disposed within an insulating cavity defined between the inner liner and the outer wrapper.
Abstract:
A refrigerator includes a wall covering assembly having a top wall spaced-apart from a top wall of a liner, and a rear wall spaced-apart from a rear wall of the liner. The wall covering assembly includes a pattern of ports for providing outwardly directed cooled air to the refrigerator cabinet from a duct assembly. The duct assembly is configured to deliver cooled air through the ventilated portion of the wall covering assembly and also deliver cooled air to a front portion of the refrigerator cabinet via a downwardly directed air curtain. The air curtain disrupts the outward flow of air from the ventilated portion of the wall covering assembly before the cooled air reaches a gasket assembly disposed around the refrigerator doors. Angled venting slots disposed on the wall covering assembly direct air towards inner surfaces of the doors without disruption from the air curtain.
Abstract:
A refrigerator includes a liner and a wall covering assembly to create a false wall within a refrigerator cabinet. The wall covering assembly includes a top wall spaced-apart from a top wall of the liner, and a rear wall spaced-apart from a rear wall of the liner. The rear wall of the wall covering assembly includes a ventilated portion for providing outwardly directed air to the refrigerator cabinet. A duct assembly is disposed between the wall covering assembly and the liner and is configured to deliver air through the ventilated portion of the wall covering assembly and also deliver air in the form of a downwardly directed air curtain at the front portion of the refrigerator cabinet. The air curtain disrupts the outward flow of air from the ventilated portion of the wall covering assembly at the front portion of the refrigerator cabinet.
Abstract:
An appliance includes an outer wrapper and an inner liner that are connected to define a structural cabinet with an insulating cavity defined between the outer wrapper and the inner liner. An insulating material is disposed within the insulating cavity, wherein an at least partial vacuum is defined within the insulating cavity. The at least partial vacuum defines a pressure differential between the exterior of the structural cabinet and the insulating cavity, the pressure differential defining an inward compressive force. Wrapper structural reinforcements are disposed proximate the outer wrapper. Liner structural reinforcements are disposed proximate the inner liner, wherein each of the wrapper and liner structural reinforcements extend into the insulating cavity and are free of engagement with one another. The wrapper and liner structural reinforcements are positioned to resist the inward compressive force.
Abstract:
An appliance includes an outer wrapper and an inner liner placed within the outer wrapper and spaced apart from the outer wrapper to define an insulating space. A trim breaker extends between the inner liner and the outer wrapper to define a structural cabinet. The trim breaker defines a front face of the cabinet. The trim breaker defines a gas conduit disposed within a wall of the structural cabinet proximate the insulating space. The gas conduit is adapted to define selective communication between the insulating space and an exterior of the structural cabinet. An insulating material is disposed within the insulating space, wherein the gas conduit is substantially free of the insulating material.
Abstract:
A vacuum insulated refrigerator structure being formed from a wrapper extending around a liner is provided. The liner is positioned inside of the wrapper to form a gap there between, and to form a cavity between the wrapper and the liner. An insulating thermal bridge is formed from molding one or more extruded rails to one or more corner pieces in an injection molding device. The insulating thermal bridge is coupled across the gap wherein the insulating thermal bridge includes elongated first and second channels wherein the first and second edges are inserted into the elongated first and second channels, respectively. A curable sealant is contacted to the elongated first and second channels and the cavity is at least partially filled with a porous material between the wrapper and the liner. A vacuum is formed in the cavity and the cavity is sealed to maintain the vacuum.