Abstract:
An operable panel for an appliance includes a metallic outer wrapper having a perimetrical wrapper edge that partially defines a perimetrical breaker channel, an inner liner and a plurality of corner brackets disposed proximate the perimetrical wrapper edge. Each corner bracket cooperates with the perimetrical wrapper edge to fully define the perimetrical breaker channel. A trim breaker is adhered to the metallic outer wrapper and the corner brackets at the perimetrical breaker channel and having a liner channel that receives a portion of the inner liner. The trim breaker extends between the inner liner and the outer wrapper. An insulation material is disposed within an insulating cavity defined between the inner liner and the outer wrapper.
Abstract:
A three-dimensiona l (3D) vacuum insulation panel (VIP) (100) and a folding approach to create the 3D VIP (100) from a two-dimensional (2D) VIP of non-uniform thickness for a refrigerator, a refrigerator freezer or a non-appliance (Para. 0038), are disclosed. The folding approach includes placing a VIP main panel (110) and a plurality of VIP wall panels (410-450) on an outer film (200), where one or more panels (430, 440) are of a greater thickness than other VIP panels; placing an inner film (210) on top of the VIP main (110) and wall panels and sealing the films together. The inner film (210) is longer than the outer film (200) and this allows the films and the VIP wall panels to be folded into a finished panel (Fig. 1C and Fig. 4), wherein the longer inner film (210) allows for fording without causing tears or micro-cracks (Para. 0032) in the film.
Abstract:
A refrigeration appliance door is provided that includes a door wrapper forming an exterior of the appliance door. The door wrapper defines a wrapper flange defining a plurality of wrapper protrusions. A door liner defines a liner flange. The liner flange defines a plurality of liner protrusions. The door wrapper and the door liner are in a spaced apart configuration. A trim breaker defines a wrapper groove, a liner groove and a gasket groove. The wrapper flange is centered within the wrapper groove and the liner flange is centered within the liner groove. An adhesive is positioned within each of the wrapper and liner grooves. A portion of a gasket is positioned within the gasket groove of the trim breaker.
Abstract:
An appliance includes a metallic outer wrapper having sidewalls, a wrapper backwall and a machine wall. At least one metallic inner liner has liner walls and a liner backwall, wherein the metallic outer wrapper and the at least one metallic inner liner are coupled together at a trim breaker to define a structural cabinet having a hermetically sealed interior cavity defined between the metallic outer wrapper and the at least one metallic inner liner. The trim breaker defines a front face of the structural cabinet. At least one trim breaker conduit extends through the wrapper and liner backwalls wherein the trim breaker conduit defines a conduit through the structural cabinet, and wherein the structural cabinet is hermetically sealed at the trim breaker conduit.
Abstract:
An appliance includes an outer wrapper, an inner liner, a trim breaker having a wrapper channel that receives a wrapper edge of the outer wrapper and a liner channel that receives a liner edge of the inner liner, and an insulation material disposed within an insulating cavity defined therebetween. A multi-component thermal encapsulation material defines pre-mix, application and sealing states. The pre-mix state is defined by the distinct components of the thermal encapsulation material being separated from one another, the application state defined by the distinct components combined together into an uncured state of the thermal encapsulation material, and the sealing state defined by the thermal encapsulation material disposed within the wrapper and liner channels and surrounding the wrapper and liner edges, respectively, in the sealing state that defines a hermetic seal between the trim breaker and the outer wrapper and the inner liner.
Abstract:
A three-dimensional (3D) vacuum insulation panel (VIP) and a folding approach to create the 3D VIP from a two-dimensional (2D) VIP of non-uniform thickness for a refrigerator, a refrigerator freezer or a non-appliance, are disclosed. The folding approach includes placing a VIP main panel and a plurality of VIP wall panels on an outer film, where one or more panels are of a greater thickness than other VIP panels; placing an inner film on top of the VIP main and wall panels and sealing the films together. The inner film is longer than the outer film and this allows the films and the VIP wall panels to be folded into a finished panel, wherein the longer inner film allows for fording without causing tears or micro-cracks in the film that would adversely affect the insulation properties of the three-dimensional (3D) VIP.