Abstract:
Thin film encapsulation devices and methods for MEMS devices and packaging are provided. For a MEMS device encapsulated by a sacrificial layer, a lid layer can be deposited over the MEMS device without touching the MEMS device. The lid layer can be patterned and etched with a distribution of release etch holes, which provide access to the sacrificial layer encapsulating the MEMS device. The sacrificial material can be removed through the release etch holes, and the release etch holes can be filled with a seal layer. The seal layer can be removed from the substrate except where it seals the etch holes, leaving a series of plugs that can prevent other materials from entering the MEMS device cavity. In addition, a seal metal layer can be deposited and patterned so that it covers and encloses the plugged etch holes, and a barrier layer can cover the entire encapsulation structure.
Abstract:
Systems, devices, and methods for micro-electro-mechanical system (MEMS) tunable capacitors can include a fixed actuation electrode attached to a substrate, a fixed capacitive electrode attached to the substrate, and a movable component positioned above the substrate and movable with respect to the fixed actuation electrode and the fixed capacitive electrode. The movable component can include a movable actuation electrode positioned above the fixed actuation electrode and a movable capacitive electrode positioned above the fixed capacitive electrode. At least a portion of the movable capacitive electrode can be spaced apart from the fixed capacitive electrode by a first gap, and the movable actuation electrode can be spaced apart from the fixed actuation electrode by a second gap that is larger than the first gap.