Abstract:
An imaging member is disclosed having a surface layer comprising a heat-sensitive material whose surface compatibility to printing agents, such as toners and inks, can be substantially reversed in response to small changes in temperature. The imaging member is suitable for use in lithographic and printing applications, permitting reversible switching between compatibility states of printing agents, such as between hydrophilic and hydrophobic states or oleophilic and oleophobic states, and enabling rapid production of images on a recording medium.
Abstract:
Scanning probe systems, which include scanning probe microscopes (SPMs), atomic force microscope (AFMs), or profilometers, are disclosed that use cantilevered spring (e.g., stressy metal) probes formed on transparent substrates. When released, a free end bends away from the substrate to form the cantilevered spring probe, which has an in-plane or out-of-plane tip at its free end. The spring probe is mounted in a scanning probe system and is used to scan or otherwise probe a substrate surface-. A laser beam is directed through the transparent substrate onto the probe to measure tip movement during scanning or probing. Other detection schemes can also be used (e.g., interferometry, capacitive, piezoresistive). The probes are used for topography, electrical, optical and thermal measurements. The probes also allow an SPM to operate as a depth gauge.
Abstract:
An imaging member is disclosed having a surface layer comprising a heat-sensitive material whose surface compatibility to printing agents, such as toners and inks, can be substantially reversed in response to small changes in temperature. The imaging member is suitable for use in lithographic and printing applications, permitting reversible switching between compatibility states of printing agents, such as between hydrophilic and hydrophobic states or oleophilic and oleophobic states, and enabling rapid production of images on a recording medium.
Abstract:
A scanning probe system (100) for probing a sample (115), the scanning probe system comprising a stage (110) having a surface for mounting the sample; a probe assembly (120) including a substrate (122) and a spring probe (125) having a fixed end (210) attached to the substrate, a central section (220) separated from the substrate, and a free end (230) including a probe tip (235) positioned adjacent to the stage surface; and a measurement device (160) for measuring deformation of the spring probe caused by interaction between the probe tip and the sample, wherein the spring probe comprises a stress-engineered spring material film (520) having an internal stress gradient.
Abstract:
A scanning probe system (100) for probing a sample (115), the scanning probe system comprising a stage (110) having a surface for mounting the sample; a probe assembly (120) including a substrate (122) and a spring probe (125) having a fixed end (210) attached to the substrate, a central section (220) separated from the substrate, and a free end (230) including a probe tip (235) positioned adjacent to the stage surface; and a measurement device (160) for measuring deformation of the spring probe caused by interaction between the probe tip and the sample, wherein the spring probe comprises a stress-engineered spring material film (520) having an internal stress gradient.
Abstract:
Fluidic conduits (330A), which can be used in microarraying systems (300), dip pen nanolithography systems, fluidic circuits, and microfluidic systems, are disclosed that use channel spring probes (350) that include at least one capillary channel (351). Formed from spring beams (e.g., stressy metal beams) that curve away from the substrate when released, channels (351) can either be integrated into the spring beams (300) or formed on the spring beams. Capillary forces produced by the narrow channels (351) allow liquid to be gathered, held, and dispensed by the channel spring probes. Because the channel spring beams can be produced using conventional semiconductor processes, significant design flexibility and cost efficiencies can be achieved.
Abstract:
Scanning probe systems, which include scanning probe microscopes (SPMs), atomic force microscope (AFMs), or profilometers, are disclosed that use cantilevered spring (e.g., stressy metal) probes formed on transparent substrates. When released, a free end bends away from the substrate to form the cantilevered spring probe, which has an in-plane or out-of-plane tip at its free end. The spring probe is mounted in a scanning probe system and is used to scan or otherwise probe a substrate surface-. A laser beam is directed through the transparent substrate onto the probe to measure tip movement during scanning or probing. Other detection schemes can also be used (e.g., interferometry, capacitive, piezoresistive). The probes are used for topography, electrical, optical and thermal measurements. The probes also allow an SPM to operate as a depth gauge.
Abstract:
Fluidic conduits (330A), which can be used in microarraying systems (300), dip pen nanolithography systems, fluidic circuits, and microfluidic systems, are disclosed that use channel spring probes (350) that include at least one capillary channel (351). Formed from spring beams (e.g., stressy metal beams) that curve away from the substrate when released, channels (351) can either be integrated into the spring beams (300) or formed on the spring beams. Capillary forces produced by the narrow channels (351) allow liquid to be gathered, held, and dispensed by the channel spring probes. Because the channel spring beams can be produced using conventional semiconductor processes, significant design flexibility and cost efficiencies can be achieved.