Abstract:
In a method for channel adaptation, an analog input signal is received with a bimodal receiver via a communications channel. The analog input signal is converted to a digital input signal with an analog-to-digital converter of a digital receiver of the bimodal receiver. Channel coefficients are detected for the digital input signal associated with the communications channel. The channel coefficients indicate a number of post-cursor taps of the bimodal receiver to be used to provide an equalized digital output signal from the digital input signal. It is determined whether the number of post-cursor taps or a value associated therewith is equal to or less than a threshold number. A switch from the receiving of the analog input signal by the digital receiver to an analog receiver of the bimodal receiver is made to provide the equalized digital output signal for the analog input signal.
Abstract:
In an example, an apparatus for detecting signal loss on a serial communication channel coupled to a receiver includes an input, a detector, and an output circuit. The input is configured to receive decisions generated by sampling the serial communication channel using multiplexed decision paths in a decision feedback equalizer (DFE). The detector is coupled to the input and configured to monitor the decisions for at least one pattern generated by the multiplexed decision paths in response to absence of a serial data signal on the serial communication channel. The output circuit is coupled to the detector and configured to assert loss-of-signal in response detection of the at least one pattern by the detector.
Abstract:
A circuit for receiving data in an integrated circuit is described. The circuit comprises a receiver configured to receive an input signal and to generate output data based upon the input signal, the receiver having a level detection circuit coupled to receive the input signal; and a calibration circuit coupled to the receiver, the calibration circuit having an input for receiving the input signal; an error detection circuit coupled to the input, the error detection circuit coupled to receive the input signal, a first reference voltage and a second reference voltage; and a control circuit coupled to an output of the error detection circuit, wherein the control circuit selectively generates either an offset control signal or an amplitude control signal based upon comparisons of the input signal to the first reference voltage and the second reference voltage. A method of receiving data is also disclosed.