Abstract:
An efficient broadband crystal for wavelength conversion, the crystal being a quasi-phase matched non-linear crystal, having an aperiodic poled structure, each period being tuned, and wherein said tuning varies adiabatically along a length of said crystal from a first end wherein said tuning is a strong negative mismatch to a second end wherein said tuning is a strong positive mismatch or vice versa. The crystal is able to provide efficient wavelength conversion over a range of frequencies.
Abstract:
Method and apparatus for the ionization of living cells where an optical device (14) delivers an optical pulse having an optical field power which is modified locally by an optical field power modifying means (18) to effect ionization and destruction of living cells (16).
Abstract:
Methods, apparatus, and systems for focusing light and remote imaging through a multi-mode fiber without pre-calibration and without direct localized feedback from the distal end of the fiber. Focus control is performed by optimally shaping the wavefront input to the fiber's proximal end according to feedback information embedded in back- propagating fluorescence from the distal end, via processing that exploits the partial cylindrical symmetry of the fiber, and which optimizes according to a weighting mask. Also included is a method for efficient photo-bleaching of a fluorescently-tagged sample, which optimizes the speed and efficiency of the photo-bleaching while minimizing or avoiding damage to non-tagged areas of the sample.
Abstract:
A method or apparatus for transferring energy between a source coil and a drain coil, comprises setting an initial resonant frequency of the source coil as a first condition; setting the source coil and said drain coil in positions relative to each other to define an initial coupling coefficient therebetween, so that the initial coupling coefficient comprises a second condition; and adiabatically changing one or both of the conditions while pumping energy into the source coil. The source coil energy is transferred to the drain coil over the course of the adiabatic change.
Abstract:
A method of destroying living cells, the cells being characterized by an ionization threshold, the method comprises providing at least one optical pulse having an optical field power smaller than the ionization threshold of the cells while generating conditions for locally increasing the optical field power per unit area beyond the ionization threshold of the cells, thereby destroying the cells via ionization.
Abstract:
Method and apparatus for the ionization of living cells where an optical device (14) delivers an optical pulse having an optical field power which is modified locally by an optical field power modifying means (18) to effect ionization and destruction of living cells (16).
Abstract:
An optical system and method are presented for use in a multi-photon microscope. The system comprises an imaging lens arrangement, and a pulse manipulator arrangement. The pulse manipulator arrangement comprises a temporal pulse manipulator unit which is accommodated in an optical path of an input pulse of an initial profile, and is configured to affect trajectories of light components of the input pulse impinging thereon so as to direct the light components towards an optical axis of the lens arrangement along different optical paths, said temporal light manipulator unit being accommodated in a front focal plane of the imaging lens arrangement, thereby enabling to restore the input pulse profile at an imaging plane.
Abstract:
A method and system(10) are presented for producing exciting radiation (P’) to be used in producing an output coherent anti-stokes Raman scattering (CARS) signal of a medium (12). An input spectral phase coherent optical pulse (P), carrying a pump, a Stokes and a probe photon, is optically processed by adjusting spectral phase and polarization of wavelength components of the input pulse to produce a unitary optical exciting pulse (P’) that carries the pump photon, the Stokes photon and multiple probe photons and is capable of inducing interference between contributions from at least some of vibrational levels in the CARS signal.
Abstract:
A method and system(10) are presented for producing exciting radiation (P’) to be used in producing an output coherent anti-stokes Raman scattering (CARS) signal of a medium (12). An input spectral phase coherent optical pulse (P), carrying a pump, a Stokes and a probe photon, is optically processed by adjusting spectral phase and polarization of wavelength components of the input pulse to produce a unitary optical exciting pulse (P’) that carries the pump photon, the Stokes photon and multiple probe photons and is capable of inducing interference between contributions from at least some of vibrational levels in the CARS signal.