Abstract:
The present invention provides a new method for the synthesis of a novel kind of high-surface-area structures. A substrate is provided having pores or channels functionalized with an agent capable of binding nanoparticles, said pores or channels having a cross-sectional size of from about several nanometers to about 100 microns. A colloid solution comprising stabilized nanoparticles and a solvent is passed through said substrate, so as to bind and form more than one layer of nanoparticles in the pores or channels, where the bound nanoparticles spontaneously coalesce to form a coherent material having a substantially hollow structure and being composed of nanoparticles, where said structure follows the shape of said pores or channels in the substrate. The structures properties can be modified by deposition of another material, to form structures coated by the other material on their surface. The structures (with or without modification) can be separated from the porous substrate to obtain a material having a desired structure, for example a tubular structure.
Abstract:
A method is presented for use in fabrication of metal islands on an oxide substrate. The method comprises: depositing a selected metal on the oxide substrate by evaporation of said selected metal; and annealing a film of the selected metal on said substrate at temperatures including an annealing temperature being less than 50°C lower than a glass transition temperature, thereby forming the metal islands partially embedded in said substrate.
Abstract:
A device is presented comprising a multi-layer structure with a plurality of metal islands on the surface of a solid transparent substrate. The islands are coated by an ultrathin sol-gel derived silica film via self-assembled monolayer.
Abstract:
A method is presented for use in fabrication of metal islands on an oxide substrate. The method comprises: depositing a selected metal on the oxide substrate by evaporation of said selected metal; and annealing a film of the selected metal on said substrate at temperatures including an annealing temperature being less than 50°C lower than a glass transition temperature, thereby forming the metal islands partially embedded in said substrate.