Abstract:
A replaceable fluorescent lamp starter unit of a fluorescent light fixture has a built-in RF transceiver, and communicates wirelessly with a motion-detecting master unit. The starter unit can be controlled to turn off and turn on the fluorescent lamp of the fixture. The starter unit is registered to the master unit so that the starter unit will not respond to wireless communications from other sources. During registration, registration information is loaded into the starter unit and stored in non-volatile memory. The stored registration information is later usable to determine whether subsequently received wireless communications are for the starter unit. Systems of existing light fixtures are retrofitted with such wireless starter units, and thereby made controllable by a master unit so that the master unit can turn off the lights to conserve energy if room occupancy is not detected. The master unit can control lamp fixtures individually or as a group.
Abstract:
A low-power wireless network involves a plurality of RF-enabled fluorescent lamp starter units. In each of a plurality of intervals, a receiver of a starter unit operates in a receive mode during a beacon slot time, and for the majority of the rest of the interval operates in a low-power sleep mode. The starter unit wakes up and listens for a beacon each beacon slot time, regardless of whether a beacon is transmitted during that interval or not. A starter unit can be commanded to schedule a future action (for example, for a time between widely spaced synchronizing beacons) by making one of the beacons a scheduling beacon. The scheduling beacon includes a field that the starter unit uses to schedule the future action. If the scheduled action is to be canceled before the next widely spaced synchronizing beacon, then an action-canceling beacon is communicated in the next interval.