Abstract:
The present invention provides a mobile robot configured to navigate an operating environment, that includes a machine vision system comprising a camera that captures images of the operating environment using a machine vision system; detects the presence of an occlusion obstructing a portion of the field of view of a camera based on the captured images, and generate a notification when an occlusion obstructing the portion of the field of view of the camera is detected, and maintain occlusion detection data describing occluded and unobstructed portions of images being used by the SLAM application.
Abstract:
A mobile robot system is provided that includes a docking station having at least two pose-defining fiducial markers. The pose-defining fiducial markers have a predetermined spatial relationship with respect to one another and/or to a reference point on the docking station such that a docking path to the base station can be determined from one or more observations of the at least two pose-defining fiducial markers. A mobile robot in the system includes a pose sensor assembly. A controller is located on the chassis and is configured to analyze an output signal from the pose sensor assembly. The controller is configured to determine a docking station pose, to locate the docking station pose on a map of a surface traversed by the mobile robot and to path plan a docking trajectory.
Abstract:
The present invention provides a mobile robot configured to navigate an operating environment, that includes a machine vision system comprising a camera that captures images of the operating environment using a machine vision system; detects the presence of an occlusion obstructing a portion of the field of view of a camera based on the captured images, and generate a notification when an occlusion obstructing the portion of the field of view of the camera is detected, and maintain occlusion detection data describing occluded and unobstructed portions of images being used by the SLAM application.
Abstract:
A mobile robot system is provided that includes a docking station having at least two pose-defining fiducial markers. The pose-defining fiducial markers have a predetermined spatial relationship with respect to one another and/or to a reference point on the docking station such that a docking path to the base station can be determined from one or more observations of the at least two pose-defining fiducial markers. A mobile robot in the system includes a pose sensor assembly. A controller is located on the chassis and is configured to analyze an output signal from the pose sensor assembly. The controller is configured to determine a docking station pose, to locate the docking station pose on a map of a surface traversed by the mobile robot and to path plan a docking trajectory.
Abstract:
A mobile robot system is provided that includes a docking station having at least two pose-defining fiducial markers. The pose-defining fiducial markers have a predetermined spatial relationship with respect to one another and/or to a reference point on the docking station such that a docking path to the base station can be determined from one or more observations of the at least two pose-defining fiducial markers. A mobile robot in the system includes a pose sensor assembly. A controller is located on the chassis and is configured to analyze an output signal from the pose sensor assembly. The controller is configured to determine a docking station pose, to locate the docking station pose on a map of a surface traversed by the mobile robot and to path plan a docking trajectory.
Abstract:
A mobile robot system is provided that includes a docking station having at least two pose-defining fiducial markers. The pose-defining fiducial markers have a predetermined spatial relationship with respect to one another and/or to a reference point on the docking station such that a docking path to the base station can be determined from one or more observations of the at least two pose-defining fiducial markers. A mobile robot in the system includes a pose sensor assembly. A controller is located on the chassis and is configured to analyze an output signal from the pose sensor assembly. The controller is configured to determine a docking station pose, to locate the docking station pose on a map of a surface traversed by the mobile robot and to path plan a docking trajectory.
Abstract:
The present invention provides a mobile robot configured to navigate an operating environment, that includes a machine vision system comprising a camera that captures images of the operating environment using a machine vision system; detects the presence of an occlusion obstructing a portion of the field of view of a camera based on the captured images, and generate a notification when an occlusion obstructing the portion of the field of view of the camera is detected, and maintain occlusion detection data describing occluded and unobstructed portions of images being used by the SLAM application.
Abstract:
The present invention provides a mobile robot configured to navigate an operating environment, that includes a machine vision system comprising a camera that captures images of the operating environment using a machine vision system; detects the presence of an occlusion obstructing a portion of the field of view of a camera based on the captured images, and generate a notification when an occlusion obstructing the portion of the field of view of the camera is detected, and maintain occlusion detection data describing occluded and unobstructed portions of images being used by the SLAM application.
Abstract:
A mobile robot system is provided that includes a docking station having at least two pose-defining fiducial markers. The pose-defining fiducial markers have a predetermined spatial relationship with respect to one another and/or to a reference point on the docking station such that a docking path to the base station can be determined from one or more observations of the at least two pose-defining fiducial markers. A mobile robot in the system includes a pose sensor assembly. A controller is located on the chassis and is configured to analyze an output signal from the pose sensor assembly. The controller is configured to determine a docking station pose, to locate the docking station pose on a map of a surface traversed by the mobile robot and to path plan a docking trajectory.
Abstract:
The present invention provides a mobile robot configured to navigate an operating environment, that includes a machine vision system comprising a camera that captures images of the operating environment using a machine vision system; detects the presence of an occlusion obstructing a portion of the field of view of a camera based on the captured images, and generate a notification when an occlusion obstructing the portion of the field of view of the camera is detected, and maintain occlusion detection data describing occluded and unobstructed portions of images being used by the SLAM application.