Abstract:
A suspension method for stabilizing a bicycle frame is provided with an elastically deformable damping suspension in order to absorb shocks, wherein said method consists of elastically deforming a suspension device by a torsional effect perpendicularly to the bicycle frame. The suspension device extends over a frame plane and is fitted out to implement the method by providing a damping torsional device arranged about at least one axis contained in a torsional plane perpendicular to the frame plane.
Abstract:
A bicycle can include a frame. The frame can include a front steering axle, a front fork assembly, and a handlebar assembly for steering a front wheel of the bicycle. The bicycle can also include one or more vibration isolators. The one or more vibration isolators can be operatively connected to at least one of the frame, the front steering axle, the front fork assembly, and the handlebar assembly. The one or more vibration isolators can also be configured to exhibit a non-linear stiffness profile including a region of quasi-zero stiffness. As a result, the one or more vibration isolators isolate a rider of the bicycle from vibrations transferred through the frame.
Abstract:
A bicycle has a frame with a rear suspension defining a suspension travel. The rear suspension includes a wheel link, a separate brake link, and a shock linkage. The wheel link is connected to the frame. The wheel link and the brake link are connected to each other via a floating pivot concentric with the rear wheel axis. The wheel link having an idler with a pivot axis below a projection line extending from the floating pivot to the main fixed pivot axis. The main fixed pivot axis is higher than the floating pivot when the rear suspension is at rest. The shock linkage is mounted to the frame via a fixed shock linkage pivot and interconnects the brake link and a shock absorber fixed on the frame.
Abstract:
A motorcycle frame comprising a main frame and pivotless rear wheel suspension system. The main frame comprises frame members with threaded ends. The rear wheel suspension system comprises an axle block for each side of the wheel axle, with each axle block being releasably connected to the main frame by two members called absorbers that attenuate shock loads. Each absorber has a threaded end for threading to the threaded ends of the frame members. The other end of the absorbers is adapted to form a bolted connection with the axle block.