Abstract:
A method of manufacturing a microphone using epitaxially grown silicon. A monolithic wafer structure is provided. A wafer surface of the structure includes poly-crystalline silicon in a first horizontal region and mono-crystalline silicon in a second horizontal region surrounding a perimeter of the first horizontal region. A hybrid silicon layer is epitaxially deposited on the wafer surface. Portions of the hybrid silicon layer that contact the poly-crystalline silicon use the poly-crystalline silicon as a seed material and portions that contact the mono-crystalline silicon use the mono-crystalline silicon as a seed material. As such, the hybrid silicon layer includes both mono-crystalline silicon and poly-crystalline silicon in the same layer of the same wafer structure. A CMOS/membrane layer is then deposited on top of the hybrid silicon layer.
Abstract:
A process for overcoming extreme topographies by first planarizing a cavity in a semiconductor substrate in order to create a planar surface for subsequent lithography processing. As a result of the planarizing process for extreme topographies, subsequent lithography processing is enabled including the deposition of features in close proximity to extreme topographic surfaces (e.g., deep cavities or channels) and, including the deposition of features within a cavity. In a first embodiment, the process for planarizing a cavity in a semiconductor substrate includes the application of dry film resists having high chemical resistance. In a second embodiment, the process for planarizing a cavity includes the filling of cavity using materials such as polymers, spin on glasses, and metallurgy.
Abstract:
Method for coating micromechanical components of a micromechanical system, in particular a watch movement, comprising: providing a substrate (4) component to be coated; providing said component with a first diamond coating (2) doped with boron; providing said component with a second diamond coating (3); wherein: said second diamond coating (3) is provided by CVD in a reaction chamber; during CVD deposition, during the last portion of the growth process, a controlled increase of the carbon content within the reaction chamber is provided, thereby providing an increase of the sp2/sp3 carbon (6) bonds up to an sp2 content substantially between 1% and 45%. Corresponding micromechanical components are also provided.
Abstract:
A method for fabricating a micromechanical device and a semiconductor circuit on a substrate includes the steps of forming the micromechanical device on a device area of the substrate, the micromechanical device being embedded in a sacrificial material, selectively depositing a planarization layer on the substrate in a circuit area thereof, forming the semiconductor circuit on the planarization layer in the circuit area and removing the sacrificial material from the embedded micromechanical device. In a preferred embodiment, the planarization layer is an epitaxial silicon layer. A protective cap may be formed over the micromechanical device, so that it is completely encapsulated and is thereby protected against particulate contamination.
Abstract:
Es wird eine Vorrichtung mit einer mikromechanischen Struktur und ein Verfahren vorgeschlagen, bei dem eine vergleichsweise glatte Oberfläche (60) einer Abdeckschicht (50) auf mit Ätzrillen behafteten Wänden (20) der Struktur vorgesehen ist.
Abstract:
A method for fabricating a micromechanical device (48) and a semiconductor circuit (70) on a substrate (10) includes the steps of forming the micromechanical device (48) on a device area (58) of the substrate (10), the micromechanical device (48) being embedded in a sacrificial material (22, 34, 42), selectively depositing a planarization layer (54) on the substrate (10) in a circuit area (56) thereof, forming the semiconductor circuit (70) on the planarization layer (54) in the circuit area (56) and removing the sacrificial material (22, 34, 42) from the embedded micromechanical device (48). In a preferred embodiment, the planarization layer is an epitaxial silicon layer (54). A protective cap (98) may be formed over the micromechanical device (48), so that it is completely encapsulated and is thereby protected against particulate contamination.