Abstract:
A multi-cellular cellulose particle having a multiplicity of cells spaced from one another by cell membranes is described, which cells have a maximum inscribed sphere diameter of larger than 2 .mu.m. The cells have a continuous hole structure in which the cells communicate with one another through openings in the membranes separating two adjacent cells. The multi-cellular cellulose particle is prepared by forming drops of a solution of cellulose or a cellulose derivative, cooling the drops at a temperature lower than the solidification temperature of the solution to freeze the drops, and removing the solvent by extraction or nullifying the dissolving power of the solvent.
Abstract:
The objective of the present invention is to provide a method for easily and efficiently producing cellulose beads which have pore shape suitable for an adsorbent and of which adsorption performance is excellent without using highly toxic and highly corrosive auxiliary raw material and without industrially disadvantageous cumbersome step. The method for producing porous cellulose beads according to the present invention is characterized in comprising (a) the step of preparing a fine cellulose dispersion by mixing a low temperature alkaline aqueous solution and cellulose, (b) the step of preparing a mixed liquid by adding a crosslinking agent to the fine cellulose dispersion, (c) the step of preparing an emulsion by dispersing the mixed liquid in a dispersion medium, (d) the step of contacting the emulsion with a coagulating solvent.
Abstract:
The present invention provides a process for producing alveolar cellulosic products (sponges, sponge-cloths, etc.) from a cellulosic raw material, the process comprising:at least partially dissolving a cellulosic raw material in an intrinsic solvent for cellulose;incorporating an effective quantity of at least one pore-forming agent into the resulting mixture, with mixing; said pore-forming agent(s), being compatible with the cellulosic mixture, being capable of generating macro- and micro-pores when it/they is/are actuated;gelling the homogeneous dough thus obtained;treating said gelled dough under conditions in which the cellulose precipitates out and the pore-forming agent(s) present are actuated.The process is an advantageous alternative to the viscose process which is a polluting process. The properties of the products obtained are completely similar to those of products obtained using the viscose process. The (novel) products form part of the invention.
Abstract:
The objective of the present invention is to provide a method for easily and efficiently producing cellulose beads which have pore shape suitable for an adsorbent and of which adsorption performance is excellent without using highly toxic and highly corrosive auxiliary raw material and without industrially disadvantageous cumbersome step. The method for producing porous cellulose beads according to the present invention is characterized in comprising (a) the step of preparing a fine cellulose dispersion by mixing a low temperature alkaline aqueous solution and cellulose, (b) the step of preparing a mixed liquid by adding a crosslinking agent to the fine cellulose dispersion, (c) the step of preparing an emulsion by dispersing the mixed liquid in a dispersion medium, (d) the step of contacting the emulsion with a coagulating solvent.
Abstract:
A resin binder composition comprising: (1) a synthetic resin; (2) a water-soluble, polymeric, carboxylic thickener; and (3) a metal ammine, complex coordination compound capable of releasing ions of said metal to control the total migration of the resin binder during its deposition on a fibrous web.
Abstract:
A resin binder composition comprising: (1) a synthetic resin; (2) a water-soluble, polymeric, carboxylic thickener; and (3) a metal ammine, complex coordination compound capable of releasing ions of said metal to control the total migration of the resin binder during its deposition on a fibrous web.
Abstract:
Methods of controlling the migration of resin binders in the manufacture of bonded nonwoven fabrics from fibrous webs comprising the use of a resin binder composition comprising: (1) a synthetic resin; (2) a water soluble, polymeric, carboxylic thickener; and (3) a metal amine, complex coordination compound capable of releasing ions of said metal to control the total migration of the resin binder during its deposition on the fibrous web.
Abstract:
A resin binder composition comprising: (1) a synthetic resin; (2) a water-soluble, polymeric, carboxylic thickener; and (3) a metal ammine, complex coordination compound capable of releasing ions of said metal to control the total migration of the resin binder during its deposition on a fibrous web.
Abstract:
METHODS OF CONTROLLING THE MIGRATION OF RESIN BINDERS IN THE MANUFACTURE OF BONDED NONWOVEN FABRICS FROM FIBROUS WEBS COMPRISING THE USE OF A RESN BINDER COMPOSITION COMPRISING: (1) A SYNTHETIC RESIN; (2) A WATER SOLUBLE, POLYMERIC, CARBOXYLIC THICKENER; AND (3) A METAL AMMINE, COMPLEX COORDINATION COMPOUND CAPABLE OF RELEASINGIONS OF SAID METAL TO CONTROL THE TOTAL MIGRATION OF THE RESIN BINDER DURING ITS DEPOSITION ON THE FIBROUS WEB.