Abstract:
A wide-angle lens calibration system is provided, which may include a rotation unit, an image input unit, and a processing unit. A lens to be calibrated may be disposed on the rotation unit; the rotation direction of the rotation unit may be parallel to the horizontal direction; the optical axis center of the lens may be aligned with a reference object. The image input unit may receive images from the lens. The processing unit may control the rotation unit to rotate and analysis the images received from the lens. The processing unit may execute a distortion calibration process, wherein the processing unit may continuously rotate the rotation unit by a predetermined angle and then record the distance between the position of the reference object in the image and the optical axis center and a total rotation angle after each rotation so as to establish a distortion calibration model.
Abstract:
An apparatus for distributing the bus traffic of the multiple camera inputs of an automotive system on chip (SoC) and an automotive SoC using the apparatus are disclosed. The plurality of camera data caches stores data from the plurality of cameras in corresponding internal buffers, measures the data storage status of the buffers, and transmits the data to memory. The bus monitor analyzes a bus signal, and then outputs a signal capable of allowing the plurality of camera data caches to transmit the data via the bus based on the results of the analysis. The master arbiter determines the priorities of use of the bus of the camera data caches, and provides the right to use the bus to the plurality of camera data caches based on the priorities of use of the bus.
Abstract:
A system includes an agricultural vehicle having a first storage container configured to store an agricultural product, a support vehicle having a second storage container, and an aerial vehicle having one or more sensors configured to monitor a fullness of the second storage container. The aerial vehicle is configured to provide a first signal indicative of the fullness of the second storage container to the agricultural vehicle.
Abstract:
A wide-angle lens calibration system is provided, which may include a rotation unit, an image input unit, and a processing unit. A lens to be calibrated may be disposed on the rotation unit; the rotation direction of the rotation unit may be parallel to the horizontal direction; the optical axis center of the lens may be aligned with a reference object. The image input unit may receive images from the lens. The processing unit may control the rotation unit to rotate and analysis the images received from the lens. The processing unit may execute a distortion calibration process, wherein the processing unit may continuously rotate the rotation unit by a predetermined angle and then record the distance between the position of the reference object in the image and the optical axis center and a total rotation angle after each rotation so as to establish a distortion calibration model.
Abstract:
A system includes an agricultural vehicle having a first storage container configured to store an agricultural product, a support vehicle having a second storage container, and an aerial vehicle having one or more sensors configured to monitor a fullness of the second storage container. The aerial vehicle is configured to provide a first signal indicative of the fullness of the second storage container to the agricultural vehicle.
Abstract:
A device diagnosis system includes an image forming apparatus, a portable terminal device, and an abnormal noise decision device. The portable terminal device collects an operating sound of the image forming apparatus, at a sound collecting position selected from a plurality of predetermined sound collecting positions relative to the image forming apparatus. The abnormal noise decision device (a) identifies a decision criterion corresponding to the sound collecting position, and (b) decides whether the operating sound contains an abnormal noise, on a basis of acoustic data of the operating sound collected, in accordance with the decision criterion identified.
Abstract:
An print medium specification method includes (a) step for acquiring first physical property information related to the print medium; (b) step for acquiring second physical property information different from the first physical property information related to the print medium; (c) step for acquiring a discrimination information for discriminating the type of the print medium by inputting the first physical property information to a discrimination function configured as a learned machine learning model; and (d) step for specify a type of the print medium using the discrimination information and the second physical property information not used for machine learning.