Abstract:
The invention relates to an electric oscillator comprising a resonant circuit. After switching on such oscillators it takes a minimum time to build up an oscillatory working amplitude. To reduce the oscillation build-up time of the oscillator it comprises a current supply source, control elements and switching means for changing the operating mode of the oscillator from a standby mode to an oscillatory mode vice versa. During standby mode a charging current is supplied via the coil of the resonant circuit so that while switching on into the oscillatory mode the charging current is interrupted, and the control elements immediately can have the disposal over an oscillatory amplitude to work with.
Abstract:
An oscillator, capable of delivering power from a d.c. power supply to a load at frequencies above 100 kHz comprises a pair of field effect transistors (16, 17) operating in anti phase in a resonant circuit and a voltage limiter (35) which in operation introduces a phase shift to the resonant circuit and returns energy to the power supply. The voltage limiter preferably comprises a diode clipper which is inductively coupled to the resonant circuit. A pulse time modulation drive system for an electrodeless backlight comprises such an oscillator together with control means for starting and stopping the oscillator according to a pulse time modulation scheme.
Abstract:
An apparatus and method are provided for increasing the Q-value of an oscillator so that a net gain in the stability of the oscillators is obtained. In the apparatus and method, a plurality of units, which each include a passive frequency-selective circuit and an active amplifier, are cascaded and the required isolation between the passive frequency-selective circuits is maintained by the active amplifier acting as a buffer. As a result, interaction and loading is prevented between the passive frequency-selective circuits so that the net gain in the stability of the oscillator is achieved because the Q-value of the oscillator is increased.
Abstract:
An oscillator (20) having sufficient accuracy and precision for use in aircraft microwave-landing systems is constructed without the use of an external inductor. A resonant tank circuit comprising both capacitance and inductance is attained by the use of inductance found internally in the base-emitter (28, 30) junction of a transistor suitably biased for operation at the frequencies of a microwave landing system. A transistor having greater-than-unity gain in the oscillation-frequency range is selected for which the angle of the reflection coefficient (S 11 ) is positive in theoscillation-frequency range.
Abstract:
An oscillator has a resonant tank circuit inclusive of an inductor (L1), a capacitor (C1), a capacitor (C3) and a capacitor (C4) connected in series with one another. A signal amplifier (A) is connected in a feedback loop which includes capacitor (C3). An additional impedance (C5) is connected between the feedback output (E) of the amplifier and the feedback signal dividing capacitors (C3) and (C4). This additional impedance (C5) improves tuning range, tuning linearity, phase noise performance, and provides a very flat power output at ultra high frequencies.
Abstract:
Zur Kosteneinsparung und zur Reduzierung der vielen bisher bei der Erzeugung von ungedämpften elektrischen Schwingungen je nach Verwendungszweck eingesetzten Sinusoszillatorarten kann der hier beschriebene neue Os zillator, der sich durch seinen einfachen schaltungstechnischen Aufbau, durch seine guten Schwing- und Abgleicheigenschaften und durch sein stabiles Schwingverhalten gegenüber den be kannten Oszillatoren auszeichnet, mit Erfolg eingesetzt werden. Durch eine geringe Abwandlung dieser Schaltung (An schluß 5 des Mitkopplungswiderstandes R M direkt auf Null potential und kapazitive Signaleinkopplung auf den nicht invertierenden Operationsverstärkereingang E) kann dieser Oszillator in einen selektiven Verstärker umfunktioniert werden.
Abstract:
Signalverarbeitende Phasenregelschaltungen zur Erze ugung von Tragersignalen verwenden als spannungsges teuerte Oszillatoren in der Regel solche mit einer Kapazitäts diode. Im Frequenzbereich von einigen hundert KHz bis zu einigen MHz ergeben sich bei Verwendung von Kapazitäts dioden auch mit sogenannten hyperabruptem PN-Übergang keine ausreichend linearen Nachsteuerkennlinien. Erfin dungsgemäß wird deshalb ein Oszillator vorgeschlagen, dessen spannungsgesteuerte Reaktanz eine Stromspiegels chaltung enthält. Derartige Oszillatoren können obere dort mit Vorteil verwendet werden, wo bei Frequenzen im genann ten Frequenzbereich eine besonders lineare Nachsteuerkenn linie gefordert wird.
Abstract:
A position sensing element forms a reactance (inductive or capacitive) in the L/C tuning circuit of an oscillator. The reactance varies as a function of the position of the sensing element relative to a predetermined object. This causes the resonant frequency of the oscillator to vary as a function of the position of the sensing element. The output of the oscillator is squared to provide a square wave signal, the frequency of which is direct function of the position of the sensing element relative to the predetermined object.
Abstract:
A switchable voltage-controlled oscillator (14) includes at least one signal input node receiving reference and modulation signal inputs and a signal output node. Resonant circuitry (52, 54) establishing the operating frequency range of the voltage-controlled oscillator is coupled to the at least one signal input node. An amplifier (50) has an input coupled to the resonant circuitry and an output coupled to the signal output node. A feedback path (17) extends from the output of the amplifier to the resonant circuitry. The resonant circuitry is switchable to introduce at least one reactive circuit element thereto to alter the operating frequency range of the voltage-controlled oscillator.