-
公开(公告)号:CN111160351B
公开(公告)日:2022-03-22
申请号:CN201911365709.0
申请日:2019-12-26
Applicant: 厦门大学
Abstract: 基于块推荐网络的快速高分辨率图像分割方法,涉及图像处理。1)构建全局分支与局部精细化分支;2)将原始高分辨率图像下采样,均匀划分成若干图像块;3)将下采样图像输入全局分支中得全局分割特征图,均匀划分成若干特征块;4)将下采样图像输入块推荐网络中获取推荐块;5)根据推荐块标号取出推荐块,与全局分割特征图相应特征块进行显著性操作,将结果输入局部精细化分支;6)局部精细化特征块与全局分割特征图相应位置融合,输出融合后的分割结果作为总体分割结果;7)分割结果与真实标签计算误差损失,训练网络,更新网络参数;8)取任意测试图像,重复步骤1)~6),得到分割预测结果。分割准确,计算资源消耗低,推理时间少。
-
公开(公告)号:CN111160351A
公开(公告)日:2020-05-15
申请号:CN201911365709.0
申请日:2019-12-26
Applicant: 厦门大学
Abstract: 基于块推荐网络的快速高分辨率图像分割方法,涉及图像处理。1)构建全局分支与局部精细化分支;2)将原始高分辨率图像下采样,均匀划分成若干图像块;3)将下采样图像输入全局分支中得全局分割特征图,均匀划分成若干特征块;4)将下采样图像输入块推荐网络中获取推荐块;5)根据推荐块标号取出推荐块,与全局分割特征图相应特征块进行显著性操作,将结果输入局部精细化分支;6)局部精细化特征块与全局分割特征图相应位置融合,输出融合后的分割结果作为总体分割结果;7)分割结果与真实标签计算误差损失,训练网络,更新网络参数;8)取任意测试图像,重复步骤1)~6),得到分割预测结果。分割准确,计算资源消耗低,推理时间少。
-