一种基于计算机视觉的大跨桥梁车辆追踪与车辆荷载谱智能识别方法

    公开(公告)号:CN117409379B

    公开(公告)日:2024-07-12

    申请号:CN202311341478.6

    申请日:2023-10-17

    Abstract: 本发明提出一种基于计算机视觉的大跨桥梁车辆追踪与车辆荷载谱智能识别方法。所述方法针对路侧摄像头在桥上分布布置的工况,首先通过训练后YOLOv7深度网络获取单摄像头数据中的车辆外观图像信息与对应车辆类型、时间等信息,并结合车道线识别方法实现车辆横向位置识别;然后引入L2‑Net深度描述符,通过各摄像头数据设计搜索匹配策略,实现行车方向各车辆行驶轨迹的精确追踪,得到车辆在桥上任意时刻的位置信息;最后将方法集成为车辆荷载谱识别系统,其可结合动态称重数据,以较低的运算耗时和较高的精度实现各种监控场景下车辆荷载谱的识别。

    一种基于计算机视觉的大跨桥梁车辆追踪与车辆荷载谱智能识别方法

    公开(公告)号:CN117409379A

    公开(公告)日:2024-01-16

    申请号:CN202311341478.6

    申请日:2023-10-17

    Abstract: 本发明提出一种基于计算机视觉的大跨桥梁车辆追踪与车辆荷载谱智能识别方法。所述方法针对路侧摄像头在桥上分布布置的工况,首先通过训练后YOLOv7深度网络获取单摄像头数据中的车辆外观图像信息与对应车辆类型、时间等信息,并结合车道线识别方法实现车辆横向位置识别;然后引入L2‑Net深度描述符,通过各摄像头数据设计搜索匹配策略,实现行车方向各车辆行驶轨迹的精确追踪,得到车辆在桥上任意时刻的位置信息;最后将方法集成为车辆荷载谱识别系统,其可结合动态称重数据,以较低的运算耗时和较高的精度实现各种监控场景下车辆荷载谱的识别。

    一种结构振动位移识别方法及系统

    公开(公告)号:CN114485417B

    公开(公告)日:2022-12-13

    申请号:CN202210016940.4

    申请日:2022-01-07

    Abstract: 本发明提出了一种基于深度循环神经网络光流估计模型的结构振动位移识别方法及系统,所述方法包括基于土木工程结构振动数据集的深度循环神经网络光流估计模型学习、结构振动位移识别过程、结合降噪自编码器对识别结果的校正以及结构振动位移识别全过程系统化的封装。该方法能够有效解决传统位移传感器在应用背景下的稀疏布置、质量负载、人为参与以及成本昂贵等实际问题。相比于其他应用深度神经网络的结构振动位移识别方法,通过共享权重和GRU迭代更新器的网络架构设计,本发明能实现更有效率且更精准的识别效果,且具有模型参数轻量,泛化能力强的优势。系统化的流程封装也使得本发明在土木工程结构振动领域的实际应用场景下更加便捷。

    一种基于深度循环神经网络光流估计模型的结构振动位移识别方法及系统

    公开(公告)号:CN114485417A

    公开(公告)日:2022-05-13

    申请号:CN202210016940.4

    申请日:2022-01-07

    Abstract: 本发明提出了一种基于深度循环神经网络光流估计模型的结构振动位移识别方法及系统,所述方法包括基于土木工程结构振动数据集的深度循环神经网络光流估计模型学习、结构振动位移识别过程、结合降噪自编码器对识别结果的校正以及结构振动位移识别全过程系统化的封装。该方法能够有效解决传统位移传感器在应用背景下的稀疏布置、质量负载、人为参与以及成本昂贵等实际问题。相比于其他应用深度神经网络的结构振动位移识别方法,通过共享权重和GRU迭代更新器的网络架构设计,本发明能实现更有效率且更精准的识别效果,且具有模型参数轻量,泛化能力强的优势。系统化的流程封装也使得本发明在土木工程结构振动领域的实际应用场景下更加便捷。

    一种基于桥梁监控视频中车辆匹配深度学习的桥梁荷载分布识别方法

    公开(公告)号:CN113837007B

    公开(公告)日:2022-04-12

    申请号:CN202110971025.6

    申请日:2021-08-23

    Abstract: 本发明提出了一种基于桥梁监控视频中车辆匹配深度学习的桥梁荷载分布识别方法,所述方法首先进行目标车辆图像的获得及车辆荷载信息关联,然后利用基于HardNet深度学习描述符的图像匹配方法实现不同监控视频图像中的车辆识别,最后对给定时刻的所有位置监控视野中的车辆进行识别,结合目标车辆图像附加的车辆荷载信息,实现桥梁上的车辆荷载识别。本发明的图像匹配过程在各种监控场景下都能很好地建立车辆图像间的点特征对应关系,对于不同监控视频图像间存在的亮度、视角以及尺度变化都有着很好的鲁棒性,从而使得本方法能够有效应对复杂多变的实际监控场景的挑战,稳定识别桥上的车辆荷载。

    一种基于桥梁监控视频中车辆匹配深度学习的桥梁荷载分布识别方法

    公开(公告)号:CN113837007A

    公开(公告)日:2021-12-24

    申请号:CN202110971025.6

    申请日:2021-08-23

    Abstract: 本发明提出了一种基于桥梁监控视频中车辆匹配深度学习的桥梁荷载分布识别方法,所述方法首先进行目标车辆图像的获得及车辆荷载信息关联,然后利用基于HardNet深度学习描述符的图像匹配方法实现不同监控视频图像中的车辆识别,最后对给定时刻的所有位置监控视野中的车辆进行识别,结合目标车辆图像附加的车辆荷载信息,实现桥梁上的车辆荷载识别。本发明的图像匹配过程在各种监控场景下都能很好地建立车辆图像间的点特征对应关系,对于不同监控视频图像间存在的亮度、视角以及尺度变化都有着很好的鲁棒性,从而使得本方法能够有效应对复杂多变的实际监控场景的挑战,稳定识别桥上的车辆荷载。

Patent Agency Ranking