-
公开(公告)号:CN103439668A
公开(公告)日:2013-12-11
申请号:CN201310400509.0
申请日:2013-09-05
Applicant: 桂林电子科技大学
IPC: G01R31/36
Abstract: 本发明为动力锂离子电池的电荷状态估算方法与系统,本方法第一步建立等效电池的电路模型,对电池进行充放电和静置实验、定时采样得到电压时间曲线,通过公式辨识模型参数、得到开路电压OCV与SoC的非线性关系;第二步、基于卡尔曼算法,用状态预测、预测误差方差、滤波增益、状态估算和估算误差方差等矩阵,得到SoC最优估算值。本系统模数转换器、程序存储器、可编程存储器、定时器及显示器分别与微处理器连接,电流、电压传感器分别联接在待测电池与负载连接的电路中、输出接入模数转换器。可编程存储器存储实验所得的电池模型参数,程序存储器存储本方法的估算程序。本发明SoC估算精度可达1%,且更稳定;系统实时提供SoC估算值。
-
公开(公告)号:CN104502858B
公开(公告)日:2017-07-14
申请号:CN201410851163.0
申请日:2014-12-31
Applicant: 桂林电子科技大学
IPC: G01R31/36
Abstract: 本发明为基于后向差分离散模型的动力电池SOC估计方法与系统,本方法第一步、建立动力电池的后向差分离散模型,通过含遗忘因子的最小二乘法对后向差分离散模型的参数进行辨识。第二步、基于第一步所得的动力电池的后向差分离散模型,结合开路电压与SOC的非线性关系,采用自适应扩展卡尔曼滤波,完成动力电池SOC的有效估计。本系统动力电池所接的电压、电流传感器经模数转换模块连接嵌入微控制器。微控制器含低通滤波预处理模块、后向差分离散电池模型参数在线辨识模块和AEKF算法SOC估计模块。所得SOC结果送显示器设备的CAN网络。本发明结构简单,提高参数辨识速度和精度,减小历史数据对辨识影响,计算方便,SOC估计精度高。
-
公开(公告)号:CN103176139B
公开(公告)日:2015-07-29
申请号:CN201310074148.5
申请日:2013-03-08
Applicant: 桂林电子科技大学
IPC: G01R31/36
Abstract: 本发明为动力电池非光滑迟滞特性补偿的电荷状态估算方法及系统,本法第一步采集电池输出电压和电流,由电池等效电路模型得到各参数的关系式构建神经网络OCV(k)预估模型,求解其中参数,对开路端电压OCV(k)在线估计。第二步SDH模型和RBF2串联组成动态迟滞混合模型。SDH模型以第一步所得OCV(k)为输入,其输出的y(k)和OCV(k)、OCV(k-1)为RBF2的输入,RBF2加权学习间接调整SDH模型的参数,逼近实际的复杂迟滞关系,最终输出在线估算的SOC(k)。本系统由微处理器和安装于电池电路的电流、电压传感器等构成,存储执行本方法的程序,得SOC(k)估算值。本发明借鉴神经网络,补偿了动力电池复杂非光滑迟滞非线性特性,提高SOC(k)在线估算精度。
-
公开(公告)号:CN104502858A
公开(公告)日:2015-04-08
申请号:CN201410851163.0
申请日:2014-12-31
Applicant: 桂林电子科技大学
IPC: G01R31/36
Abstract: 本发明为基于后向差分离散模型的动力电池SOC估计方法与系统,本方法第一步、建立动力电池的后向差分离散模型,通过含遗忘因子的最小二乘法对后向差分离散模型的参数进行辨识。第二步、基于第一步所得的动力电池的后向差分离散模型,结合开路电压与SOC的非线性关系,采用自适应扩展卡尔曼滤波,完成动力电池SOC的有效估计。本系统动力电池所接的电压、电流传感器经模数转换模块连接嵌入微控制器。微控制器含低通滤波预处理模块、后向差分离散电池模型参数在线辨识模块和AEKF算法SOC估计模块。所得SOC结果送显示器设备的CAN网络。本发明结构简单,提高参数辨识速度和精度,减小历史数据对辨识影响,计算方便,SOC估计精度高。
-
公开(公告)号:CN103176139A
公开(公告)日:2013-06-26
申请号:CN201310074148.5
申请日:2013-03-08
Applicant: 桂林电子科技大学
IPC: G01R31/36
Abstract: 本发明为动力电池非光滑迟滞特性补偿的电荷状态估算方法及系统,本法第一步采集电池输出电压和电流,由电池等效电路模型得到各参数的关系式构建神经网络OCV(k)预估模型,求解其中参数,对开路端电压OCV(k)在线估计。第二步SDH模型和RBF2串联组成动态迟滞混合模型。SDH模型以第一步所得OCV(k)为输入,其输出的y(k)和OCV(k)、OCV(k-1)为RBF2的输入,RBF2加权学习间接调整SDH模型的参数,逼近实际的复杂迟滞关系,最终输出在线估算的SOC(k)。本系统由微处理器和安装于电池电路的电流、电压传感器等构成,存储执行本方法的程序,得SOC(k)估算值。本发明借鉴神经网络,补偿了动力电池复杂非光滑迟滞非线性特性,提高SOC(k)在线估算精度。
-
公开(公告)号:CN119622670A
公开(公告)日:2025-03-14
申请号:CN202411674150.0
申请日:2024-11-21
Applicant: 桂林电子科技大学
Abstract: 本发明提供一种基于区块链的软件版权交易和保护方法及系统,具体涉及区块链应用技术领域;系统允许软件供应商提交不同版本的软件信息,并将这些信息存储在分布式文件系统IPFS中,通过在区块链中索引这些信息的哈希值,实现了版权信息的不可篡改存储;此外,系统采用抽象语法树提取软件代码的语法结构,进一步增强版权保护;版权信息生成的数字签名与版权信息一同被记录在区块链节点中,确保版权信息的可追溯性;当有版权交易产生后,系统会生成包含版权信息的数字签名,并将其与交易信息一起写入区块链节点,记录版权的每一次交易,实现版权历史的透明追溯;此外,系统还提供了一种疑似软件抄袭的对比方法,允许软件作者上传疑似侵权软件,并通过比对区块链上存储的抽象语法树结构来识别和警告潜在的抄袭行为;本发明的方法及系统不仅提高了软件版权保护的效率和安全性,而且为软件版权交易提供了一个可靠、透明的平台,有助于促进版权的合理流通和利用。
-
公开(公告)号:CN103439668B
公开(公告)日:2015-08-26
申请号:CN201310400509.0
申请日:2013-09-05
Applicant: 桂林电子科技大学
IPC: G01R31/36
Abstract: 本发明为动力锂离子电池的电荷状态估算方法与系统,本方法第一步建立等效电池的电路模型,对电池进行充放电和静置实验、定时采样得到电压时间曲线,通过公式辨识模型参数、得到开路电压OCV与SoC的非线性关系;第二步、基于卡尔曼算法,用状态预测、预测误差方差、滤波增益、状态估算和估算误差方差等矩阵,得到SoC最优估算值。本系统模数转换器、程序存储器、可编程存储器、定时器及显示器分别与微处理器连接,电流、电压传感器分别联接在待测电池与负载连接的电路中、输出接入模数转换器。可编程存储器存储实验所得的电池模型参数,程序存储器存储本方法的估算程序。本发明SoC估算精度可达1%,且更稳定;系统实时提供SoC估算值。
-
-
-
-
-
-