-
公开(公告)号:CN116258849A
公开(公告)日:2023-06-13
申请号:CN202211487842.5
申请日:2022-11-24
Applicant: 福州大学
IPC: G06V10/26 , G06V20/70 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/0455 , G06N3/0475 , G06N3/094 , G06N3/084
Abstract: 本发明涉及一种基于生成对抗网络的昼夜域自适应语义分割方法。包括:将待训练的数据集,进行数据预处理;设计两个基于生成对抗网络的语义分割分支,分支A用来预测源域图像和目标域白天图像,分别获得对应的语义分割预测结果,分支B用来预测源域图像和目标域夜晚图像,获得对应的语义分割预测结果;根据设计的目标损失函数loss,利用反向传播方法计算昼夜域自适应语义分割网络中各参数的梯度,并利用随机梯度下降方法更新参数,学习到模型的最优参数;将待测的夜晚图像输入到分支B网络中,获得相应的语义分割预测结果。本发明利用有限的白天语义分割数据集,结合生成对抗网络思想和域自适应方法,显著提高对夜晚图像的语义分割的性能。