-
公开(公告)号:CN119827155A
公开(公告)日:2025-04-15
申请号:CN202411798759.9
申请日:2024-12-09
Applicant: 苏州大学
IPC: G01M13/045 , G06F18/24 , G06F18/214 , G06F18/2131 , G06N3/08 , G06N3/084 , G06N3/0464 , G06N3/048
Abstract: 本发明涉及一种双分类器协同引导的轴承不平衡故障诊断方法及系统,所述方法包括:采集不同工况下各个健康状态的轴承振动信号,并进行快速傅里叶变换,将其转换为频域信号,得到数据集,将数据集划分为不同工况下的源域数据和目标域数据,对所述源域数据进行标记;构建故障诊断模型,所述故障诊断模型包括共享特征提取器、平衡分类器和标准分类器;以及基于所述源域数据和所述目标域数据,构建损失函数;利用损失函数对所述故障诊断模型进行训练,得到训练后的故障诊断模型;将待测轴承振动信号输入到所述训练后的故障诊断模型中,得到故障诊断结果。本发明能够解决现有技术中诊断模型性能受标签稀缺、数据分布不平衡以及模型泛化能力提升的问题。
-
公开(公告)号:CN119128669A
公开(公告)日:2024-12-13
申请号:CN202411149555.2
申请日:2024-08-21
Applicant: 苏州大学
IPC: G06F18/2413 , G01M13/045 , G06F18/214 , G06F18/21 , G06F18/25 , G06F18/23213 , G06N3/0985 , G06N3/0895 , G06N3/096 , G06F123/02
Abstract: 本发明涉及一种基于物理信息自监督迁移的轴承故障诊断方法及系统,属于轴承故障诊断技术领域。采集轴承的振动信号获得数据集,对其分析获得物理标签、伪标签和数据标签,并对伪标签进行动态更新;分别根据伪标签和数据标签的交叉熵、物理标签和数据标签的交叉熵获得数据损失和物理损失,并动态分配权重融合两者获得损失函数;其中,物理损失的权重根据数据损失的方差倒数动态调整;将待检测轴承的目标数据输入至利用损失函数训练得到的诊断模型中,输出目标特征;将特征输入至物理模型和聚类模型中获得目标物理标签和目标伪标签,并将其对齐,得到故障诊断结果。本发明提高了诊断模型的泛化能力和可解释性,且不依赖于标记标签。
-