-
公开(公告)号:CN110633663A
公开(公告)日:2019-12-31
申请号:CN201910835953.2
申请日:2019-09-05
Applicant: 东南大学
Abstract: 本发明公开了一种手语视频中自动裁剪多模态数据的方法,该方法:把手语视频裁剪为图像、视频、语音以及手语四个模态的数据集合,基于感知哈希算法把视频关键帧与自定义人脸特征库进行比对,实现视频裁剪过程全自动。本发明通过利用自定义的人脸库裁剪视频中的多模态数据,提高构建多模态数据集的效率。
-
公开(公告)号:CN107248144B
公开(公告)日:2019-12-10
申请号:CN201710286383.7
申请日:2017-04-27
Applicant: 东南大学
IPC: G06T5/00
Abstract: 本发明公开了一种基于压缩型卷积神经网络的图像去噪方法,包括:构造训练数据集;构造压缩型去噪卷积神经网络模型;利用训练数据集对网络模型进行训练;将有噪声的图像输入到训练好的网络中,并用所述有噪声的图像减去网络的输出图像得到清晰的去噪图像。本发明中的去噪卷积神经网络主要特征在于将原始的去噪卷积神经网络的卷积层替换成了经由低秩矩阵分解压缩后的卷积层。本发明通过改进一种已有的去噪卷积神经网络DnCNN,将其网络参数减少了至少75%,精简了网络,同时保持了优异的去噪效果。
-
公开(公告)号:CN110522448A
公开(公告)日:2019-12-03
申请号:CN201910631316.3
申请日:2019-07-12
Applicant: 东南大学
Abstract: 本发明公开了一种基于图卷积神经网络的脑网络分类方法,包括以下步骤:首先,从大脑功能核磁共振图像中提取各个脑区的血氧合度依赖信号;其次,构建能够反映大脑分区之间功能性连接拓扑结构特征的脑图;再次,将构建的脑图以及实际诊断标签输入到图卷积神经网络中进行特征学习以及模型训练。本发明用于脑网络分类。
-
公开(公告)号:CN107146228B
公开(公告)日:2019-10-08
申请号:CN201710175040.3
申请日:2017-03-22
Applicant: 东南大学
Abstract: 本发明公开了一种基于先验知识的大脑磁共振图像超体素生成方法,基于K‑means聚类算法,利用空间距离、像素强度和先验知识的加权作为最终的距离度量,对图像像素进行聚类,把大脑MRI图像分割为一系列均匀并且较好地贴合图像边缘的超体素。本发明通过融入大脑不同组织的先验知识,设计一种新型测度算子,构建一种鲁棒的超体素生成方法,实现对大脑磁共振图像的超体素分割,能够减小图像噪声对分割结果的影响。与已有的超体素生成方法相比,本发明方法效率更高,边界贴合度更高,能较好地抑制噪声的影响。
-
公开(公告)号:CN109886406A
公开(公告)日:2019-06-14
申请号:CN201910136000.7
申请日:2019-02-25
Applicant: 东南大学
Abstract: 本发明公开了一种基于深度压缩算法的复数卷积神经网络压缩的方法,首先通过正常的网络训练学习网络的连通性;然后,对训练过的网络参数进行修剪,将复数参数的模低于一个阈值的连接修剪掉;接着,将修剪过后的稀疏网络进行量化,进一步压缩网络;最后,利用哈夫曼编码对复数参数的实部和虚部进行编码,得到最终的压缩网络。本发明方法利用卷积神经网络中过多的冗余参数,删减掉不重要的连接,并进一步通过量化和哈夫曼编码压缩网络,在很大程度上减少了网络的参数,并且只有很小的精度损失,达到了压缩复数卷积神经网络的目的,解决了复数卷积神经网络由于巨大的参数量无法部署在嵌入式设备上的问题。
-
公开(公告)号:CN107248144A
公开(公告)日:2017-10-13
申请号:CN201710286383.7
申请日:2017-04-27
Applicant: 东南大学
IPC: G06T5/00
Abstract: 本发明公开了一种基于压缩型卷积神经网络的图像去噪方法,包括:构造训练数据集;构造压缩型去噪卷积神经网络模型;利用训练数据集对网络模型进行训练;将有噪声的图像输入到训练好的网络中,并用所述有噪声的图像减去网络的输出图像得到清晰的去噪图像。本发明中的去噪卷积神经网络主要特征在于将原始的去噪卷积神经网络的卷积层替换成了经由低秩矩阵分解压缩后的卷积层。本发明通过改进一种已有的去噪卷积神经网络DnCNN,将其网络参数减少了至少75%,精简了网络,同时保持了优异的去噪效果。
-
-
公开(公告)号:CN106934806A
公开(公告)日:2017-07-07
申请号:CN201710135456.2
申请日:2017-03-09
Applicant: 东南大学
Abstract: 本发明公开一种基于结构清晰度的无参考图失焦模糊区域分割方法,包括以下步骤:(1)缩放图像,将图像缩放为原图像面积的约1/4倍;(2)计算清晰度差值,分别计算原图和缩放后图像对应位置图像块的结构清晰度,并计算二者的差;(3)提取模糊区域,滤除差值图像的噪声,使用图像分割算法分割出模糊区域,并对分割后的结果进行上采样。针对无参考图像的失焦模糊区域分割,本发明使用原始图像构造缩放图像,分别计算缩放图像以及原始图像的清晰度,进而获得模糊度分布图像,最终快速有效地分割出图像失焦模糊区域。
-
公开(公告)号:CN103955904B
公开(公告)日:2017-05-24
申请号:CN201410196439.6
申请日:2014-05-12
Applicant: 东南大学
IPC: G06T5/00
Abstract: 本发明公开了一种仅仅通过离散分数阶傅里叶变换的相位信息来重建原始信号的方法,属于信号处理技术领域。本发明首先将信号重建问题转化为凸优化问题;然后,对原始信号进行离散分数阶傅里叶变换,并通过改变离散分数阶傅里叶变换的变换矩阵获得不同数目的相位信息;接着,将得到的相位信息进行存储或者传输;最后,利用块坐标下降法和内点法结合的幅度恢复算法,通过合适数目的相位信息将原始信号恢复出来,即重建原始信号。本发明方法利用相同数目下的相位信息包含的信息量大于幅度信息包含的信息量这一理论依据,实现了以较少数目的相位信息重建原始信号的目的。
-
公开(公告)号:CN105929386A
公开(公告)日:2016-09-07
申请号:CN201610230971.4
申请日:2016-04-14
Applicant: 东南大学
Abstract: 本发明公开了一种基于高阶累积量的波达估计方法,属于信号处理技术领域。该方法利用等间距直线传感器阵列所接收到的观测信号,估计出信号源的波达方向及波达时间;包括以下步骤:步骤1、对观测信号做傅里叶变换后进行空域‑频域平滑处理;步骤2、构造出空域‑频域平滑处理后信号的四阶累积量矩阵;步骤3、利用迭代地部分SVD方法,根据四阶累积量矩阵构建观测信号的信号子空间和噪声子空间;步骤4、根据观测信号的信号子空间和噪声子空间之间的正交性,估计出信号源的波达方向及波达时间。本发明还公开了一种基于声线传播时间层析的海洋声层析方法及一种定位方法。本发明可大幅降低算法的计算复杂度,提高算法实时性并降低硬件资源消耗。
-
-
-
-
-
-
-
-
-