-
公开(公告)号:CN119782463A
公开(公告)日:2025-04-08
申请号:CN202411840111.3
申请日:2024-12-13
Applicant: 北京中科闻歌科技股份有限公司
IPC: G06F16/3329 , G06F16/353 , G06F40/35 , G06N3/045 , G06N5/022
Abstract: 本发明提供了一种仿人类复杂问题检索方法、电子设备及存储介质,该方法包括:对原始问题语句进行拆解处理,以得到若干个原子问题语句;根据若干个原子问题语句之间的关联关系,确定若干个原子问题语句之间的执行顺序;根据每一原子问题语句对应的语句类型,确定每一原子问题语句对应的目标检索信源;根据若干原子问题语句之间的执行顺序,依次通过每一原子问题语句对应的目标检索信源,对该原子问题语句进行检索,得到每一原子问题语句对应的原始答复语句;对若干原始答复语句进行语义整合,得到原始问题语句对应的目标答复语句,以通过意图识别、问题拆解、逻辑规划、扩展生成以及动态执行等多个模块协同工作,有效解决了复杂问题的检索难题。
-
公开(公告)号:CN119005198A
公开(公告)日:2024-11-22
申请号:CN202411030867.1
申请日:2024-07-30
Applicant: 北京中科闻歌科技股份有限公司
Abstract: 本公开涉及一种基于大模型的海量负面信息检测方法、装置、设备及介质。其中,基于大模型的海量负面信息检测方法包括:获取待检测文本,由目标机器学习模型对待检测文本进行分析输出第一结果,在第一结果为待检测文本对应的情感分析结果为非负面时,获取目标指令语句,由目标大语言模型基于目标指令语句对待检测文本进行情感分析,输出第二结果,将第二结果确定为待检测文本的检测结果,目标大语言模型的第一参数量高于目标机器学习模型的第二参数量,由此,能够通过不同参数量的机器学习模型和大语言模型结合的方式对待检测文本进行情感分析,确定待检测文本的检测结果,实现了在对待检测文本快速进行情感分析的基础上提高了情感分析的准确性。
-
公开(公告)号:CN118940826A
公开(公告)日:2024-11-12
申请号:CN202411434591.3
申请日:2024-10-15
Applicant: 北京中科闻歌科技股份有限公司 , 新华融合媒体科技发展(北京)有限公司
IPC: G06N5/02
Abstract: 本发明涉及自然语言处理领域,提供一种事件知识图谱构建方法、装置和电子设备,包括:基于源文本数据集构建事件图谱;基于所述事件图谱和开源知识图谱之间的共同实体,对所述事件图谱和所述开源知识图谱进行融合,得到融合了事件图谱和开源知识图谱的事件知识图谱;获取所述事件知识图谱中的节点和有向边的特征向量,得到进行了知识表示的事件知识图谱,作为目标事件知识图谱。本发明通过将事件图谱与知识图谱深度融合得到具有丰富知识表示的事件知识图谱。
-
公开(公告)号:CN113971770B
公开(公告)日:2024-10-29
申请号:CN202010648949.8
申请日:2020-07-07
Applicant: 北京中科闻歌科技股份有限公司
Abstract: 本发明涉及一种针对包含边框的视频拷贝检测方法及装置,该方法包括:从样本视频中抽取多个第一关键帧图像;基于图像边缘由外向内遍历第一关键帧图像,去除纯色像素点区域,得到多个非纯色像素点为边缘的第二关键帧图像;对第二关键帧图像进行二次遍历,去除纯色像素点个数大于第一阈值的图像区域;从每个第二关键帧图像中提取图像特征,得到多个第一多维图像特征向量;基于多个第一多维图像特征向量与视频库中存储的视频的多个第二多维图像特征向量建立索引,获取多个拷贝视频帧图像;根据时间信息,将多个拷贝视频帧图像进行整合,获得拷贝视频片段,由此,可以实现对视频中存在的多处拷贝视频片段的准确检测,并确定其在原视频中的位置。
-
公开(公告)号:CN112650867B
公开(公告)日:2024-09-24
申请号:CN202011561238.3
申请日:2020-12-25
Applicant: 北京中科闻歌科技股份有限公司
IPC: G06F16/535 , G06F16/583
Abstract: 本发明实施例公开了一种图片匹配方法、装置、电子设备以及存储介质。该方法包括:获取目标文本,基于预先训练的特征提取模型提取所述目标文本的文本特征信息;将所述文本特征信息与预设图库中各图片的图片特征信息进行匹配,其中,所述各图片的图片特征信息基于所述预先训练的特征提取模型对各图片提取得到,所述特征提取模型包括文本特征提取子模型、图片特征提取子模型以及分别与所述文本特征提取子模型、所述图片特征提取子模型连接的联合特征提取子模型;将与所述文本特征信息相匹配的图片确定为所述目标文本的匹配图片。通过本发明实施例公开的技术方案,实现了文本自动配图,提升文本的观感质量,激发读者的阅读兴趣,提升读者的阅读体验。
-
公开(公告)号:CN117591948B
公开(公告)日:2024-09-03
申请号:CN202410082714.5
申请日:2024-01-19
Applicant: 北京中科闻歌科技股份有限公司
IPC: G06F18/2411 , G06F40/166 , G06F18/214
Abstract: 本公开提供了一种评论生成模型训练方法和装置,涉及人工智能技术领域,具体涉及自然语言处理、深度学习、大模型等技术领域。具体实现方案为:获取文本样本集,文本样本集包括:第一文本样本,第一文本样本包括:展示文本以及与展示文本相关的情感立场文本;获取预先构建的评论生成网络,评论生成网络包括:编码器和解码器,编码器分别对展示文本和情感立场文本进行建模,得到评论全局特征向量;解码器用于对评论全局特征向量进行解码,得到评论结果信息;将从文本样本集中选取的第一文本样本输入评论生成网络,得到评论生成网络输出的评论结果信息;基于评论结果信息,得到训练完成的评论生成模型。
-
公开(公告)号:CN114936282B
公开(公告)日:2024-06-11
申请号:CN202210470144.8
申请日:2022-04-28
Applicant: 北京中科闻歌科技股份有限公司
IPC: G06F18/24 , G06F18/23 , G06F18/214 , G06N3/04 , G06Q10/0635 , G06Q40/00
Abstract: 本公开实施例涉及一种金融风险线索确定方法、装置、设备和介质。该方法包括:获取待分类文本,并对待分类文本进行分词处理,得到各目标词语;基于各目标词语和目标词向量索引表,生成待分类文本对应的第一融合词向量组合;其中,目标词向量索引表基于初始文本样本集和预设向量转换算法预先构建,初始文本样本集为文本分类模型的训练样本集,预设向量转换算法用于将文本转换为多级别的词向量;将第一融合词向量组合输入文本分类模型,并根据模型输出结果确定待分类文本的目标文本类型;基于目标文本类型确定待分类文本是否为金融分线线索。通过上述技术方案,有效地提升了文本分类速度,进而提升线上金融业务中违规行为信息的发现效率。
-
公开(公告)号:CN113496118B
公开(公告)日:2024-05-31
申请号:CN202010266045.9
申请日:2020-04-07
Applicant: 北京中科闻歌科技股份有限公司
IPC: G06F40/242 , G06F40/279 , G06N20/10
Abstract: 本发明公开了一种新闻主体识别方法、设备和计算机可读存储介质。该方法包括:获取待识别新闻文本,并对新闻文本进行预处理;利用预设的分词词典,对预处理后的新闻文本执行带词性标注的分词处理,得到多个被标注词性的分词;在词性被标注为主体的分词中查询预设的目标主体,并在新闻文本中提取目标主体对应的多种主体特征;将目标主体对应的多种主体特征输入预先训练的主体识别模型中,获取主体识别模型输出的识别结果。在本发明中,将目标主体对应的多种主体特征作为主体识别模型的输入,使主体识别模型根据目标主体对应的多种主体特征识别新闻文本的主体是否为目标主体,弥补了新闻主体识别的技术空白。
-
公开(公告)号:CN116361470B
公开(公告)日:2024-05-14
申请号:CN202310347961.9
申请日:2023-04-03
Applicant: 北京中科闻歌科技股份有限公司 , 新华融合媒体科技发展(北京)有限公司
IPC: G06F16/35
Abstract: 本发明提供了一种基于话题描述的文本聚类清洗和合并方法,首先对文本进行聚类,得到多个聚类结果,每个聚类结果相当于一个话题,然后基于话题向量与话题中文本向量的文本相似度大小、话题描述与每个文本生成的话题描述的文本相似度大小、文本与话题的关键词相同的个数三个指标,对聚类结果进行清洗和合并,最后得到聚类结果和每个话题的描述,能够使得聚类结果更加准确。
-
公开(公告)号:CN117972420A
公开(公告)日:2024-05-03
申请号:CN202410038893.2
申请日:2024-01-10
Applicant: 北京中科闻歌科技股份有限公司
IPC: G06F18/214 , G06F40/194 , G06F40/30
Abstract: 本申请涉及自然语言处理技术领域,尤其涉及一种基于预训练模型的通用立场检测方法、装置和存储介质。包括:获取待检测文本和待检测立场目标;将待检测文本和待检测立场目标输入通用立场检测模型,预测待检测文本对于待检测立场目标的立场类别概率分布;立场类别用于表示待检测文本对于待检测立场目标的立场;通用立场检测模型为根据至少一个文本、至少一个立场目标、每个文本的立场类别和每个文本的立场类型预先训练得到;立场类型用于表示文本的立场类别是否依赖于立场目标;将立场类别概率分布中最大概率数值对应的立场类别,确定为待检测文本对于待检测立场目标的立场类别。本申请实施例用于解决立场检测的检测效果较差的问题。
-
-
-
-
-
-
-
-
-