一种多视图癌症药物反应预测系统

    公开(公告)号:CN117524346B

    公开(公告)日:2024-07-05

    申请号:CN202311547057.9

    申请日:2023-11-20

    Abstract: 一种多视图癌症药物反应预测系统,涉及生物信息技术领域,本申请采用多视图的策略代替了通过GCN在细胞系‑药物异质图上聚合已知反应信息的传统方法,充分利用了已知的细胞系‑药物的所有反应信息。引入ILGCN,在一定程度上缓解了高阶GCN出现的过平滑问题。这使得本发明在提高预测性能的同时,也提供了更稳定和可靠的结果。在GDSC和CCLE两个数据集上进行大量实验,验证了本申请在不同实验设置下优于当前最先进的几个CDR预测方法。具有较好的鲁棒性和泛化性。本申请预测方法充分利用已知细胞系和药物数据,因此本申请的技术方案提升了癌症药物反应预测准确率。

    基于级联森林和双流结构的circRNA识别方法

    公开(公告)号:CN116070157B

    公开(公告)日:2024-04-16

    申请号:CN202310041103.1

    申请日:2023-01-13

    Abstract: 基于级联森林和双流结构的circRNA识别方法,具体涉及一种利用级联森林基于RNA序列k‑mer生物特征和circRNA剪接位置特征的双流结构的circRNA识别方法,为了解决现有circRNA识别方法识别的结果不准确的问题。获取预处理后包含circRNA或lncRNA的RNA序列,获得每条RNA序列剪接位置序列的位置特征向量,以及RNA序列k‑mer信息的k‑mer特征向量,将二者分别输入位置森林和k‑mer森林中,分别输出位置类别概率向量和k‑mer类别概率向量,将位置类别概率向量和k‑mer类别概率向量分别与超参数u进行融合,将融合后的两个结果相加,得到RNA序列最终的类别概率向量,获得RNA序列是否为circRNA的识别结果。属于生物信息领域。

    一种多视图癌症药物反应预测系统

    公开(公告)号:CN117524346A

    公开(公告)日:2024-02-06

    申请号:CN202311547057.9

    申请日:2023-11-20

    Abstract: 一种多视图癌症药物反应预测系统,涉及生物信息技术领域,本申请采用多视图的策略代替了通过GCN在细胞系‑药物异质图上聚合已知反应信息的传统方法,充分利用了已知的细胞系‑药物的所有反应信息。引入ILGCN,在一定程度上缓解了高阶GCN出现的过平滑问题。这使得本发明在提高预测性能的同时,也提供了更稳定和可靠的结果。在GDSC和CCLE两个数据集上进行大量实验,验证了本申请在不同实验设置下优于当前最先进的几个CDR预测方法。具有较好的鲁棒性和泛化性。本申请预测方法充分利用已知细胞系和药物数据,因此本申请的技术方案提升了癌症药物反应预测准确率。

    基于级联森林和双流结构的circRNA识别方法

    公开(公告)号:CN116070157A

    公开(公告)日:2023-05-05

    申请号:CN202310041103.1

    申请日:2023-01-13

    Abstract: 基于级联森林和双流结构的circRNA识别方法,具体涉及一种利用级联森林基于RNA序列k‑mer生物特征和circRNA剪接位置特征的双流结构的circRNA识别方法,为了解决现有circRNA识别方法识别的结果不准确的问题。获取预处理后包含circRNA或lncRNA的RNA序列,获得每条RNA序列剪接位置序列的位置特征向量,以及RNA序列k‑mer信息的k‑mer特征向量,将二者分别输入位置森林和k‑mer森林中,分别输出位置类别概率向量和k‑mer类别概率向量,将位置类别概率向量和k‑mer类别概率向量分别与超参数u进行融合,将融合后的两个结果相加,得到RNA序列最终的类别概率向量,获得RNA序列是否为circRNA的识别结果。属于生物信息领域。

    一种基于多核学习预测增强子及其强度分类方法及分类设备

    公开(公告)号:CN114627964B

    公开(公告)日:2023-03-24

    申请号:CN202111069507.9

    申请日:2021-09-13

    Abstract: 一种基于多核学习预测增强子及其强度分类方法及分类设备,本发明涉及基于多核学习预测增强子及其强度分类方法及分类设备。本发明的目的是为了解决现有方法需要花费大量的人力物力去制备实验所需的试剂,以及通过生物实验注释DNA片段功能,效率低的问题。过程为:获取带标签的DNA测序序列;使用三种特征描述符进行编码转换为向量;分别对得到的向量进行特征筛选获得各自的F值,分别进行降维排序,选出各自对应的最佳的特征子集;计算每个高斯函数对应的最佳权重;构建增强子预测模型;构建强弱增强子预测模型;通过构建好的增强子预测模型和强弱增强子预测模型对待测DNA测序序列进行判断。本发明用于生物信息技术领域。

    基于XGboost算法的DNA结合蛋白识别方法及相关产品

    公开(公告)号:CN113764045B

    公开(公告)日:2022-05-06

    申请号:CN202111056316.9

    申请日:2021-09-09

    Abstract: 基于XGboost算法的DNA结合蛋白识别方法、系统、存储介质及设备,属于计算机与蛋白质识别结合技术领域。本发明为了解决现有的DNA结合蛋白识别方法存在不能兼顾通用性和识别准确率的问题。本发明利用DNA结合蛋白识别分类器对待识别的DNA结合蛋白进行识别;DNA结合蛋白识别分类器的确定过程中,首先获取处理的DNA结合蛋白特征数据集;采用不同的提取算法提取DNA结合蛋白数据集的数据特征,得到多个特征文件;并将不同特征提取算法提取的序列特征矩阵拼接起来,得到拼接后的特征矩阵;然后对生成的特征矩阵进行规范化处理,使用MRMD算法矩阵进行降维处理;最后使用XGboost算法构建并训练DNA结合蛋白识别分类器模型。主要用于DNA结合蛋白的识别。

    基于氨基酸组成和蛋白质相互作用识别抗氧化蛋白方法

    公开(公告)号:CN113611355A

    公开(公告)日:2021-11-05

    申请号:CN202110950026.2

    申请日:2021-08-18

    Abstract: 基于氨基酸组成和蛋白质相互作用识别抗氧化蛋白方法,涉及医药技术领域,针对现有技术中根据序列信息预测的二级结构,使用PSI‑PRED等工具提取蛋白质二级结构信息的特征时,预测的蛋白质二级结构存在误差,进而导致抗氧化蛋白识别准确低的问题,本申请提出了一种全新的抗氧化蛋白识别方法,利用蛋白质‑蛋白质相互作用的特征和氨基酸的组成来表达抗氧化蛋白序列的特征,能够实现对抗氧化蛋白的准确识别,为相应蛋白质定位、疾病分析及药物研究提供了理论基础。本申请在处理不平衡的抗氧化蛋白数据时引入了多种不平衡数据处理方法,最终使用SMOTE算法处理数据得到的模型最优,优化了抗氧化蛋白的识别效果。

    基于多通道图卷积网络的药物靶标相互作用预测方法

    公开(公告)号:CN112863693A

    公开(公告)日:2021-05-28

    申请号:CN202110154690.6

    申请日:2021-02-04

    Abstract: 基于多通道图卷积网络的药物靶标相互作用预测方法,它属于药物与靶标关系预测技术领域。本发明解决了现有方法依赖于手工所提取的特征不准确,导致的对药物靶标相互作用预测的准确性差的问题。本发明根据获得的药物特征矩阵和蛋白质特征矩阵构建药物蛋白对网络,并采用多通道图卷积网络对药物蛋白对网络中药物蛋白对之间的拓扑关系和药物蛋白对特征之间的邻近关系进行特征提取,得到拓扑关系嵌入和特征邻近关系嵌入,再对拓扑关系嵌入和特征邻近关系嵌入进行处理得到共同嵌入,最后使用注意力机制将拓扑关系嵌入、特征邻近关系嵌入和共同嵌入融合,将融合结果输入多层感知机对药物靶标关系进行预测。本发明可以应用于药物与靶标关系的预测。

    基于网络表示学习的计算疾病相似度系统

    公开(公告)号:CN112151184A

    公开(公告)日:2020-12-29

    申请号:CN202011035456.3

    申请日:2020-09-27

    Abstract: 基于网络表示学习的计算疾病相似度系统,涉及疾病相似度计算领域,特别涉及一种基于网络表示学习的计算疾病相似度系统,包括:信息融合模块:用于处理提取HumanNet信息、计算两个Go_term之间的相似度,测量基因之间的相似度;网络嵌入模块:用于将每个基因转化为向量形式;疾病相似度计算模块:基于基因的向量表示和疾病相关基因数据DisGeNET将疾病相关基因融合,得到疾病的向量表示,利用疾病向量表示度量疾病的相似性;基因与疾病预测模块:实现基于基因的向量表示,结合MLP模型,对基因与疾病之间的关系进行预测的功能;本发明用于提升计算疾病相似度的准确性。

    基于缺失模态生成的多模态药物分子预测方法

    公开(公告)号:CN120015169A

    公开(公告)日:2025-05-16

    申请号:CN202510077682.4

    申请日:2025-01-17

    Inventor: 李洋 汪国华 刘畅

    Abstract: 基于缺失模态生成的多模态药物分子预测方法,本发明属于人工智能辅助药物研发领域,具体涉及多模态药物分子预测方法。本发明的目的是解决多模态分子‑文本预训练数据集规模受分子描述文本模态缺失的限制,模型难以充分捕捉分子图结构和文本之间的复杂关系,且现有多模态分子预训练模型在下游任务上的表现存在一定不足的问题。具体过程为:一:构建多模态分子预训练模型;二:对多模态分子预训练模型进行预训练,获得预训练好的多模态分子预训练模型;三:基于下游任务类型,对预训练好的多模态分子预训练模型进行微调,获得微调后的多模态分子预训练模型;四:基于微调后的多模态分子预训练模型对下游任务进行预测。

Patent Agency Ranking