-
公开(公告)号:CN119132248A
公开(公告)日:2024-12-13
申请号:CN202411527796.6
申请日:2024-10-30
Applicant: 南京大学
IPC: G09G3/34 , G06T3/04 , G06T5/60 , G06T5/70 , G06T5/20 , G06T3/4007 , G06T3/4046 , G06T1/20 , G06F5/06 , G06N3/0464 , G06N3/0455
Abstract: 本发明公开了一种显示器件的动态背光调控方法及系统,包括:根据当前待显示的原始输入图像中每个像素点的特征值,形成灰度图像;将灰度图像输入至预设的卷积神经网络编码器模型,得到压缩特征图;将压缩特征图输入至预设的耦合扩散算法解码器模型,得到更新图像;基于更新图像每个像素点的灰度值,调控所述显示器的背光;本发明采用神经网络方法来进行图像背光的压缩特征提取,提升了算法对不同显示场景的适应性,在解码器阶段通过双线性插值和最近邻插值的耦合,使得扩充阶段的运算不过于复杂,又提供了相对更加可靠、平滑的图像效果,对于视频流的处理采用了乒乓设计和流水线架构设计,增加了并行度和数据吞吐率,提高了数据处理效率。
-
公开(公告)号:CN117077746A
公开(公告)日:2023-11-17
申请号:CN202311085861.X
申请日:2023-08-25
Applicant: 南京大学
Abstract: 本发明提供了一种基于二值权重的脉冲神经网络的无监督片上学习系统,包括编码及排序模块,计算模块,求最小值模块,和二值权重更新模块。编码及排序模块将输入数据进行编码并进行升序排列;计算模块计算输出神经元是否产生脉冲,并产生状态向量和索引向量用于神经元选择模块和二值权重更新模块;神经元选择模块选中发射脉冲时间最早的神经元;二值权重更新模块基于二值权重更新规则对选中的神经元的二值权重进行更新。本方法的初始权重,以及在训练及推理时使用的权重均为二值权重(0,1),大大减小了对于硬件中存储的需求,且二值权重无需使用乘法器,能够实现在硬件上进行低面积、低功耗的片上训练。
-