基于二值权重的脉冲神经网络的无监督片上学习系统

    公开(公告)号:CN117077746A

    公开(公告)日:2023-11-17

    申请号:CN202311085861.X

    申请日:2023-08-25

    Applicant: 南京大学

    Abstract: 本发明提供了一种基于二值权重的脉冲神经网络的无监督片上学习系统,包括编码及排序模块,计算模块,求最小值模块,和二值权重更新模块。编码及排序模块将输入数据进行编码并进行升序排列;计算模块计算输出神经元是否产生脉冲,并产生状态向量和索引向量用于神经元选择模块和二值权重更新模块;神经元选择模块选中发射脉冲时间最早的神经元;二值权重更新模块基于二值权重更新规则对选中的神经元的二值权重进行更新。本方法的初始权重,以及在训练及推理时使用的权重均为二值权重(0,1),大大减小了对于硬件中存储的需求,且二值权重无需使用乘法器,能够实现在硬件上进行低面积、低功耗的片上训练。

Patent Agency Ranking