-
公开(公告)号:CN116754565A
公开(公告)日:2023-09-15
申请号:CN202310977429.5
申请日:2023-08-04
Applicant: 哈尔滨工业大学
Abstract: 本发明一种光学元件全口径表面微缺陷光致荧光检测用自动对焦检测方法,涉及光学元件技术领域,为解决现有的对焦检测方法,需要手动对焦及检测,效率低,且无法保证检测结果的准确性和一致性的问题。包括如下步骤:一、安装物镜与待测光学元件;二、确定待检测区域内多个标定检测点坐标,构建检测物镜焦平面方程,制定检测扫描路径;三、控制元件沿检测扫描路径移动进行检测,判断待测点是否处于物镜焦平面,若是,则在该点进行扫描检测,若不是,则计算补偿量并控制移动平台在调焦方向对元件进行距离补偿;四、实时保存光谱信息及检测成像信息;五、根据检测扫描路径判断检测是否结束。实现了光学元件表面微缺陷光致荧光检测的自动对焦及检测。
-
公开(公告)号:CN114264640B
公开(公告)日:2023-08-18
申请号:CN202111621697.0
申请日:2021-12-28
Applicant: 哈尔滨工业大学
Abstract: 一种紫外光学元件加工表面微观光伤点缺陷检测方法,它属于工程光学领域。本发明为解决现有技术中缺乏有效的微观光伤点缺陷精确辨识与检测方法的问题,本发明包括如下步骤:步骤一、确定元件加工表面尺寸最大的表面结构缺陷并完成定位;步骤二、获取步骤一定位的缺陷受不同波长激发光作用下产生的荧光发射光谱峰值强度,确定峰值强度最高的激发光波长为最佳激发光波长;步骤三、确定最佳缺陷位置;步骤四、对最佳缺陷位置受激发产生的荧光发射光谱进行高斯谱线拟合分析,确定微观光伤点缺陷的种类和权重大小;步骤五、建立元件加工表面缺陷区微观光伤点缺陷之间的演变规律及对步骤四的结果进行验证。
-
公开(公告)号:CN116026836A
公开(公告)日:2023-04-28
申请号:CN202211505089.8
申请日:2022-11-29
Applicant: 哈尔滨工业大学
IPC: G01N21/88 , G01N21/958 , G01N21/64
Abstract: 本发明提供了一种熔融石英光学元件加工表面微区微观光伤点缺陷相对浓度检测方法,属于工程光学技术领域。为解决现有技术对熔融石英元件加工表面点缺陷表征手段仅适用于表征及判别点缺陷的种类,尚无有效方法针点缺陷的相对浓度进行检测的问题。本发明通过对熔融石英光学元件加工表面微缺陷区开展光致荧光探测实验,得到缺陷区的点缺陷类型及不同点缺陷对应的子峰曲线峰面积,建立点缺陷所含孤对电子浓度与子峰曲线峰面积之间的关系,计算不同点缺陷所含孤对电子的相对浓度,结合点缺陷化学结构及反应规律计算熔融石英加工表面微缺陷区不同点缺陷的相对浓度。本发明填补了目前尚无法获得材料表面点缺陷相对浓度的技术空白。
-
公开(公告)号:CN115797283A
公开(公告)日:2023-03-14
申请号:CN202211505064.8
申请日:2022-11-29
Applicant: 哈尔滨工业大学
IPC: G06T7/00 , G16C60/00 , G06F30/20 , G06F30/28 , G06F113/08 , G06F119/14
Abstract: 本发明提供了一种光学材料激光损伤过程中冲击波波速预测方法,属于工程光学技术领域。为解决现有技术泵浦‑探测超快时间分辨阴影成像实验难以识别冲击波形成初期这一关键阶段的冲击波波速;且实验过程中需要重复进行大量损伤性试验,而针对特定光学材料表面微纳缺陷,难以通过重复性、损伤性的实验来准确获取其激光损伤过程中冲击波波速的问题。本发明通过构建模型分别模拟了激光损伤初期能量沉积过程、能量传递过程和激光损伤后期高功率激光与光学材料加工表面微纳缺陷区的相互作用过程,最终得到损伤过程中不同时刻光学材料加工表面缺陷区冲击波波速。本发明填补了当前尚无法获得损伤过程中近微纳缺陷区冲击波波速的理论和技术空白。
-
公开(公告)号:CN115762684A
公开(公告)日:2023-03-07
申请号:CN202211505065.2
申请日:2022-11-29
Applicant: 哈尔滨工业大学
Abstract: 本发明提供一种紫外光学元件激光诱导周期性结构的预测方法,属于工程光学技术领域。为解决现有技术中对紫外光学元件激光诱导微结构的形成理论及工艺技术尚不完善,需要通过大量探索性实验对紫外光学元件激光诱导周期性结构进行研究的问题。通过对紫外光学元件激光诱导周期性结构的形成机理的理论分析,通过设置等密度的离子点群建立高功率激光辐照下元件加工表面模型,采用二维分布的高斯型飞秒激光模型,基于麦克斯韦方程、牛顿‑洛伦兹方程研究了短脉冲激光与紫外光学元件表面的相互作用过程中等离子体的运动行为规律,模拟了紫外光学元件激光诱导周期性结构的形成。通过本发明方法可准确模拟紫外光学元件激光诱导周期性结构的形成。
-
-
-
-